Measurement of an Analyte Concentration in Test Solution by Using Helmholtz Resonator for Biosensor Applications
Abstract
:1. Introduction
2. Measurement Principle and Architecture
2.1. Underlying Theory
2.2. Measurement Principle and Device Architecture
3. Results
3.1. Measurement of Glucose Concentration in Test Solutions with Various Concentrations
3.2. Measurement of Practical Glucose Concentration of Human Blood Glucose Level in an Aqueous Solution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alvarez, M.; Lechuga, L.M. Microcantilever-based platforms as biosensing tools. Analyst 2010, 135, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Burg, T.P.; Manalis, S.R. Suspended microchannel resonators for biomolecule detection. Appl. Phys. Lett. 2003, 83, 2698–2700. [Google Scholar] [CrossRef]
- Ilic, B.; Yang, Y.; Aubin, K.; Reichenbach, R.; Krylov, S.; Craighead, H.G. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 2005, 5, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Wee, K.W.; Kang, G.Y.; Park, J.; Kang, J.Y.; Yoon, D.S.; Park, J.H.; Kim, T.S. Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 2005, 20, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Loui, A.; Goericke, F.T.; Ratto, T.V.; Lee, J.; Hart, B.R.; King, W.P. The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing. Sens. Actuator A Phys. 2008, 147, 516–521. [Google Scholar] [CrossRef]
- Zougagh, M.; Ríos, A. Micro-electromechanical sensors in the analytical field. Analyst 2009, 134, 1274–1290. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.N.; Mutharasan, R. Biosensing using dynamic-mode cantilever sensors: A review. Biosens. Bioelectron. 2012, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, X.; Davis, E.N.; Lin, Q.; Wang, Q. Development of Novel Glucose Sensing Fluids with Potential Application to Microelectromechanical Systems-Based Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2008, 2, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, C.; Fiorilli, S.; Bianco, S.; Canavese, G.; Castagna, R.; Ferrante, I.; Digregorio, G.; Marasso, S.L.; Napione, L.; Bussolino, F. Development of microcantilever-based biosensor array to detect angiopoietin-1, a marker of tumor angiogenesis. Biosens. Bioelectron. 2010, 25, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Okan, M.; Sari, E.; Duman, M. Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens. Bioelectron. 2017, 88, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Helmholtz, H. On the Sensations of Tone as a Physiological Basis for the Theory of Music; Longmans, Green: Harlow, UK, 1875. [Google Scholar]
- Kela, L. Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system. Arch. Appl. Mech. 2009, 79, 1115–1125. [Google Scholar] [CrossRef]
- Liu, B.; Yang, L. Transmission of Low-Frequency Acoustic Waves in Seawater Piping Systems with Periodical and Adjustable Helmholtz Resonator. J. Mar. Sci. Eng. 2017, 5, 56–69. [Google Scholar] [CrossRef]
- Bennett, G.J.; Stephens, D.B.; Rodriguez, V.F. Resonant mode characterization of a cylindrical Helmholtz cavity excited by a shear layer. J. Acoust. Soc. Am. 2017, 141, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Mak, C.M. Acoustic performance of different Helmholtz resonator array configurations. Appl. Acoust. 2018, 130, 204–209. [Google Scholar] [CrossRef]
- Webster, E.S.; Davies, C.E. The Use of Helmholtz Resonance for Measuring the Volume of Liquids and Solids. Sensors 2010, 10, 10663–10672. [Google Scholar] [CrossRef] [PubMed]
- Njane, S.N.; Shinohara, Y.; Kondo, N.; Ogawa, Y.; Suzuki, T.; Nishizu, T. Improved underwater Helmholtz resonator with an open cavity for sample volume estimation. Comput. Electron. Agric. 2018, 147, 18–26. [Google Scholar] [CrossRef]
- Zhao, S.; Tao, W.; He, Q.; Zhao, H.; Cao, W. A non-invasive photoacoustic and ultrasonic method for the measurement of glucose solution concentration. AIP Adv. 2017, 7, 035313. [Google Scholar] [CrossRef]
- Pryor, A.W.; Roscoe, R. The velocity and absorption of sound in aqueous sugar solutions. Proc. Phys. Soc. 1954, 67, 70–81. [Google Scholar] [CrossRef]
- Blood Sugar Level Ranges. Available online: https://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html (accessed on 21 January 2019).
- Zhao, L.; Hu, Y.; Hebibul, R.; Xia, Y.; Huang, L.; Zhao, Y.; Jiang, Z. Density measurement sensitivity of micro-cantilevers influenced by shape dimensions and operation modes. Sens. Actuator B Chem. 2017, 245, 574–582. [Google Scholar] [CrossRef]
- Zhao, C.; Montaseri, M.H.; Wood, G.S.; Pu, S.H.; Seshia, A.A.; Kraft, M. A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuator A Phys. 2016, 249, 93–111. [Google Scholar] [CrossRef]
- Chretiennot, T.; David, D.; Katia, G. Microwave-Based Microfluidic Sensor for Non-Destructive and Quantitative Glucose Monitoring in Aqueous Solution. Sensors 2016, 10, 1733. [Google Scholar] [CrossRef] [PubMed]
- Schwerthoeffer, U.; Weigel, R.; Kissinger, D. A highly sensitive glucose biosensor based on a microstrip ring resonator. In Proceedings of the 2013 IEEE IMWS-BIO Workshop, Seattle, WA, USA, 2–7 June 2013. [Google Scholar] [CrossRef]
- Payam, A.F.; Trewby, W.; Voïtchovsky, K. Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever. Analyst 2017, 142, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
Glucose Concentration | 0 wt % | 4.9 wt % | 9.7 wt % | 15.9 wt % | 30.4 wt % |
Analytical Results (A) | 5597 Hz | 5766 Hz | 5829 Hz | 5915 Hz | 6132 Hz |
Experiment Results (B) | 5609 Hz | 5797 Hz | 5938 Hz | 6123 Hz | 6522 Hz |
Relative Error (|A−B|/B*100%) | 0.21% | 0.53% | 1.83% | 3.40% | 5.98% |
Glucose Levels (mg/dL) | Density (kg/m3) | Sound Speed (m/s) | Resonant Frequency (Hz) | |
---|---|---|---|---|
Analytical Results | Experiment Results | |||
0 | 998 | 1479 | 5596 | 5609 |
72 | 998.25 | 1480.2 | 5601 | 5617 |
162 | 998.57 | 1481.6 | 5607 | 5623 |
Amount of Test Sample | 25 mL | 1 mL | 0.1 mL |
Resonant Frequency | 5597 Hz | 41.65 kHz | 134.8 kHz |
Sensitivity | 11.99 Hz/(kg/m3) | 92.67 Hz/(kg/m3) | 299.2 Hz/(kg/m3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Park, Y.-H. Measurement of an Analyte Concentration in Test Solution by Using Helmholtz Resonator for Biosensor Applications. Sensors 2019, 19, 1127. https://doi.org/10.3390/s19051127
Chen Y, Park Y-H. Measurement of an Analyte Concentration in Test Solution by Using Helmholtz Resonator for Biosensor Applications. Sensors. 2019; 19(5):1127. https://doi.org/10.3390/s19051127
Chicago/Turabian StyleChen, Yugang, and Yong-Hwa Park. 2019. "Measurement of an Analyte Concentration in Test Solution by Using Helmholtz Resonator for Biosensor Applications" Sensors 19, no. 5: 1127. https://doi.org/10.3390/s19051127
APA StyleChen, Y., & Park, Y. -H. (2019). Measurement of an Analyte Concentration in Test Solution by Using Helmholtz Resonator for Biosensor Applications. Sensors, 19(5), 1127. https://doi.org/10.3390/s19051127