Non-Contact Radiofrequency Inductive Sensor for the Dielectric Characterization of Burn Depth in Organic Tissues
Abstract
:1. Introduction
2. Principle of the Contactless RF Sensing Technique
3. Materials and Methods
3.1. Tissue Samples
3.2. Tissue Heating Procedures
3.3. Experimental Set Up and Measurement Procedure
4. Results and Discussion
4.1. Samples Heated with Interrupted Heating Procedures (IHP)
4.2. Continuous Heating Procedure (CHP) versus IHP
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burke-Smith, A.; Collier, J.; Jones, I. A comparison of non-invasive imaging modalities: Infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns 2015, 41, 1695–1707. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Richard, R. Partial-Thickness Burns: Identification and Management. Adv. Skin Wound Care 2003, 16, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Devgan, L.; Bhat, S.; Milner, S. The Pathogenesis of Burn Wound Conversion. Ann. Plast. Surg. 2007, 59, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Brusson, M.; Rossignol, J.; Binczak, S.; Laurent, G.; de Fonseca, B. Assessment of Burn Depths on Organs by Microwave. Procedia Eng. 2014, 87, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Wake, K.; Watanabe, S. Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz. Phys. Med. Biol. 2014, 59, 4739–4747. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Moore, M. Bioelectrical Impedance Assessment of Wound Healing. J. Diabetes Sci. Technol. 2012, 6, 209–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pethig, R.; Kells, D.B. The passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 1987, 32, 933–970. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Environ. Heal. 1993, AFOSR-TR96, 271. [Google Scholar]
- Peyman, A. Dielectric properties of tissues; variation with age and their relevance in exposure of children to electromagnetic fields; state of knowledge. Prog. Biophys. Mol. Biol. 2011, 107, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Peyman, A. Dielectric Properties of Tissues; Variation with Structure and composition. In Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 14–18 September 2009; pp. 863–864. [Google Scholar] [CrossRef]
- Peyman, A.; Gabriel, C. Development and characterisation of tissue equivalent materials for frequency range 30–300 MHz. Electron. Lett. 2007, 43, 4–5. [Google Scholar] [CrossRef]
- Dinh, T.-H.-N.; Wang, M.; Serfaty, S.; Joubert, P.-Y. Contactless Radio Frequency Monitoring of Dielectric Properties of Egg White during Gelation. IEEE Trans. Magn. 2017, 53. [Google Scholar] [CrossRef]
- Gabriel, C. Dielectric Properties of Biological Materials; Taylor and Francis: Abingdon, UK, 2006. [Google Scholar]
- Serfaty, S.; Haziza, N.; Darrasse, L.; Kan, S. Multi-turn split-conductor transmission-line resonators. Magn. Reson. Med. 1997, 38, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Masilamany, G.; Joubert, P.-Y.; Serfaty, S.; Roucaries, B.; Le Diraison, Y. Radiofrequency inductive probe for non- contact dielectric characterization of organic medium. Electron. Lett. 2014, 1–2. [Google Scholar] [CrossRef]
- Dinh, T.; Wang, M.; Serfaty, S.; Placko, D.; Joubert, P.-Y. Evaluation of a dielectric inclusion using inductive RF antennas and artificial neural networks for tissue diagnosis. Stud. Appl. Electromagn. Mech. Electromagn. Nondestruct. Eval. 2018, 43, 252–262. [Google Scholar]
- Dinh, T.H.N.; Wang, M.; Serfaty, S.; Placko, D.; Joubert, P.-Y. Non contact estimation of the dielectric properties of organic material using an inductive RF sensor and a multifrequency approach. In Proceedings of the IEEE Conference on Cosmetic Measurements and Testing, Cergy Pontoise, France, 6–7 June 2017; pp. 1–4. [Google Scholar]
- Masilamany, G.; Joubert, P.-Y.; Serfaty, S.; Roucaries, B.; Griesmar, P. Wireless implementation of high sensitivity radiofrequency probes for the dielectric characterization of biological tissues. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisbon, Portugal, 11–12 June 2014. [Google Scholar]
- Dennis, J.E., Jr.; Moré, J.J. Quasi-Newton Methods, Motivation and Theory. SIAM Rev. 1977, 19, 46–89. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh, T.H.N.; Serfaty, S.; Joubert, P.-Y. Non-Contact Radiofrequency Inductive Sensor for the Dielectric Characterization of Burn Depth in Organic Tissues. Sensors 2019, 19, 1220. https://doi.org/10.3390/s19051220
Dinh THN, Serfaty S, Joubert P-Y. Non-Contact Radiofrequency Inductive Sensor for the Dielectric Characterization of Burn Depth in Organic Tissues. Sensors. 2019; 19(5):1220. https://doi.org/10.3390/s19051220
Chicago/Turabian StyleDinh, Thi Hong Nhung, Stéphane Serfaty, and Pierre-Yves Joubert. 2019. "Non-Contact Radiofrequency Inductive Sensor for the Dielectric Characterization of Burn Depth in Organic Tissues" Sensors 19, no. 5: 1220. https://doi.org/10.3390/s19051220
APA StyleDinh, T. H. N., Serfaty, S., & Joubert, P.-Y. (2019). Non-Contact Radiofrequency Inductive Sensor for the Dielectric Characterization of Burn Depth in Organic Tissues. Sensors, 19(5), 1220. https://doi.org/10.3390/s19051220