Adaptive-Robust Controller for Smart Exoskeleton Robot
Abstract
:1. Introduction
- The introduction of a groundbreaking double-integral nonsingular terminal sliding mode surface, overcoming limitations in conventional SMC approaches [23,24]. This surface ensures finite-time convergence, a swift transient response, diminished chattering, and the avoidance of singularities. These enhancements address challenges observed in prior SMC strategies [23,24], providing a more-robust and -efficient control foundation.
- The development of an adaptive controller based on the modified function approximation technique (MFAT) for unknown robot dynamics models. This controller eliminates the requirement for prior knowledge of the lower and upper bounds of uncertain system parameters. By leveraging MFAT, the proposed controller offers enhanced adaptability to complex dynamics, streamlining the implementation without extensive parameter information.
- The integration of a super-twisting observer into the proposed control scheme, a significant augmentation. This integration removes the need for velocity measurements, a common challenge in control systems. By reducing dependence on velocity measurements, the control scheme’s robustness is bolstered, ensuring reliable performance even in scenarios where obtaining precise velocity information is challenging.
- The demonstration of the proposed control scheme’s superior performance through extensive experimental and comparative studies. The results highlight a rapid transient response, a relatively small steady-state error, and significantly reduced chattering. These tangible outcomes affirm the practical effectiveness of the control strategy, showcasing its potential for diverse robotic applications.
2. Problem Fundamentals
Control Goals
3. Control Scheme and Stability Analysis
3.1. Model-Based Controller
3.2. State-Feedback-Based Adaptive Modified Function Approximation Technique
3.3. Adaptive Model-Free Modified Function Approximation Technique Tracking Control with Output Feedback
4. Simulation and Comparative Analysis of Control Strategies
4.1. Implementation and Simulation of State-Feedback-Based Adaptive Modified Function Approximation Technique Control
4.2. Implementation and Simulation of Output-Feedback-Based Adaptive MFAT
4.3. Implementation of Conventional Function Approximation Technique Algorithm [18]
4.4. Comparative Study
5. Experiments’ Results
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fareh, R.; Elsabe, A.; Baziyad, M.; Kawser, T.; Brahmi, B.; Rahman, M.H. Will Your Next Therapist Be a Robot?—A Review of the Advancements in Robotic Upper Extremity Rehabilitation. Sensors 2023, 23, 5054. [Google Scholar] [CrossRef]
- Li, L.; Fu, Q.; Tyson, S.; Preston, N.; Weightman, A. A scoping review of design requirements for a home-based upper limb rehabilitation robot for stroke. Top. Stroke Rehabil. 2022, 29, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Zuccon, G.; Lenzo, B.; Bottin, M.; Rosati, G. Rehabilitation robotics after stroke: A bibliometric literature review. Expert Rev. Med. Devices 2022, 19, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, B.; Rahman, M.H.; Saad, M. Impedance learning adaptive super-twisting control of a robotic exoskeleton for physical human-robot interaction. IET Cyber-Syst. Robot. 2023, 5, e12077. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, C.; Su, X.; Li, Z.; Yang, X. Predictive-adaptive sliding mode control method for reluctance actuator maglev system. Nonlinear Dyn. 2023, 111, 4343–4356. [Google Scholar] [CrossRef]
- Nie, L.; Zhou, M.; Cao, W. Improved Nonlinear Extended Observer Based Adaptive Fuzzy Output Feedback Control for a Class of Uncertain Nonlinear Systems with Unknown Input Hysteresis. IEEE Trans. Fuzzy Syst. 2023, 31, 3679–3689. [Google Scholar] [CrossRef]
- Xu, F.; He, H.; Song, M.; Xu, X. Iterative neural network adaptive robust control of a maglev planar motor with uncertainty compensation ability. ISA Trans. 2023, 140, 331–341. [Google Scholar] [CrossRef]
- Xi, R.D.; Xiao, X.; Ma, T.N.; Yang, Z.X. Adaptive sliding mode disturbance observer based robust control for robot manipulators towards assembly assistance. IEEE Robot. Autom. Lett. 2022, 7, 6139–6146. [Google Scholar] [CrossRef]
- Hu, J.; Lai, H.; Chen, Z.; Ma, X.; Yao, B. Desired compensation adaptive robust repetitive control of a multi-DoFs industrial robot. ISA Trans. 2022, 128, 556–564. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, J.; Wu, Y.; Miao, Z.; Zhang, H.; Wang, Y. Adaptive sliding-mode disturbance observer-based finite-time control for unmanned aerial manipulator with prescribed performance. IEEE Trans. Cybern. 2022, 53, 3263–3276. [Google Scholar] [CrossRef]
- Feng, H.; Song, Q.; Ma, S.; Ma, W.; Yin, C.; Cao, D.; Yu, H. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system. ISA Trans. 2022, 129, 472–484. [Google Scholar] [CrossRef]
- Roy, S.; Roy, S.B.; Kar, I.N. Adaptive–robust control of Euler–Lagrange systems with linearly parametrizable uncertainty bound. IEEE Trans. Control. Syst. Technol. 2017, 26, 1842–1850. [Google Scholar] [CrossRef]
- Roy, S.; Roy, S.B.; Kar, I.N. A new design methodology of adaptive sliding mode control for a class of nonlinear systems with state dependent uncertainty bound. In Proceedings of the 2018 15th International Workshop on Variable Structure Systems (VSS), Graz, Austria, 9–11 July 2018; pp. 414–419. [Google Scholar]
- Roy, S.; Roy, S.B.; Lee, J.; Baldi, S. Overcoming the underestimation and overestimation problems in adaptive sliding mode control. IEEE/ASME Trans. Mechatron. 2019, 24, 2031–2039. [Google Scholar] [CrossRef]
- He, W.; Li, Z.; Dong, Y.; Zhao, T. Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Al-Shuka, H.F.; Song, R. Hybrid regressor and approximation-based adaptive control of robotic manipulators with contact-free motion. In Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 25–27 May 2018; pp. 325–329. [Google Scholar]
- Brahmi, B.; Laraki, M.H.; Saad, M.; Rahman, M.H.; Ochoa-Luna, C.; Brahmi, A. Compliant adaptive control of human upper-limb exoskeleton robot with unknown dynamics based on a Modified Function Approximation Technique (MFAT). Robot. Auton. Syst. 2019, 117, 92–102. [Google Scholar] [CrossRef]
- Huang, A.C.; Wu, S.C.; Ting, W.F. A FAT-based adaptive controller for robot manipulators without regressor matrix: Theory and experiments. Robotica 2006, 24, 205. [Google Scholar] [CrossRef]
- Chien, M.C.; Huang, A.C. Regressor-free adaptive impedance control of flexible-joint robots using FAT. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 6. [Google Scholar]
- Chien, M.C.; Huang, A.C. Adaptive control of electrically-driven robot without computation of regressor matrix. J. Chin. Inst. Eng. 2007, 30, 855–862. [Google Scholar] [CrossRef]
- Huang, A.C.; Chien, M.C. Adaptive Control of Robot Manipulators: A Unified Regressor-Free Approach; World Scientific: Singapore, 2010. [Google Scholar]
- Chien, M.C.; Huang, A.C. Adaptive impedance control of robot manipulators based on function approximation technique. Robotica 2004, 22, 395–403. [Google Scholar] [CrossRef]
- Brahmi, B.; Bojairami, I.E.; Ghomam, J.; Habibur Rahman, M.; Kovecses, J.; Driscoll, M. Skill learning approach based on impedance control for spine surgical training simulators with haptic playback. Proc. Inst. Mech. Eng. Part J. Syst. Control. Eng. 2023, 237, 447–461. [Google Scholar] [CrossRef]
- Brahmi, B.; El Bojairami, I.; Laraki, M.H.; El-Bayeh, C.Z.; Saad, M. Impedance learning control for physical human-robot cooperative interaction. Math. Comput. Simul. 2021, 190, 1224–1242. [Google Scholar] [CrossRef]
- Mobayen, S.; Bayat, F.; ud Din, S.; Vu, M.T. Barrier function-based adaptive nonsingular terminal sliding mode control technique for a class of disturbed nonlinear systems. ISA Trans. 2023, 134, 481–496. [Google Scholar] [CrossRef]
- Zirkohi, M.M. Fast terminal sliding mode control design for position control of induction motors using adaptive quantum neural networks. Appl. Soft Comput. 2022, 115, 108268. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, L.; Fang, X. High-order fast nonsingular terminal sliding mode control of permanent magnet linear motor based on double disturbance observer. IEEE Trans. Ind. Appl. 2022, 58, 3696–3705. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Gong, D.; Zhu, S. Hybrid extended state observer-based integral sliding mode control of the propulsion for a hydraulic roofbolter. Control Eng. Pract. 2022, 126, 105260. [Google Scholar] [CrossRef]
- Biswas, D.K.; Debbarma, S.; Singh, P.P. Decentralized PID-Based Sliding Mode Load Frequency Control Scheme in Power Systems. In Proceedings of the 2023 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE), Shillong, India, 15–17 June 2023; pp. 1–6. [Google Scholar]
- Chen, L.; Yan, B.; Wang, H.; Shao, K.; Kurniawan, E.; Wang, G. Extreme-learning-machine-based robust integral terminal sliding mode control of bicycle robot. Control Eng. Pract. 2022, 121, 105064. [Google Scholar] [CrossRef]
- Levant, A. Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 2003, 76, 924–941. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control; Pearson/Prentice Hall Upper Saddle River: Saddle River, NJ, USA, 2005; Volume 3. [Google Scholar]
- Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 2005, 41, 1957–1964. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, Y.; Fu, M. Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 2011, 21, 686–702. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Fan, L. Advanced Control of Wheeled Inverted Pendulum Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199. [Google Scholar]
- Alzer, H.; Kwong, M.K. On Young’s inequality. J. Math. Anal. Appl. 2019, 469, 480–492. [Google Scholar] [CrossRef]
- Yazdani, M.; Salarieh, H.; Foumani, M.S. Bio-inspired Decentralized Architecture for Walking of a 5-link Biped Robot with Compliant Knee Joints. Int. J. Control. Autom. Syst. 2018, 16, 2935–2947. [Google Scholar] [CrossRef]
- Brahmi, B.; Ahmed, T.; El Bojairami, I.; Swapnil, A.A.Z.; Assad-Uz-Zaman, M.; Schultz, K.; McGonigle, E.; Rahman, M.H. Flatness Based Control of a Novel Smart Exoskeleton Robot. IEEE/ASME Trans. Mechatron. 2021, 27, 974–984. [Google Scholar] [CrossRef]
Regulator Variables | Control Input (Equation (23)) | Control Input (Equation (41)) | FAT Controller [18] |
---|---|---|---|
RMS () | 0.0673 | 0.0886 | 0.1373 |
RMS () | 0.0526 | 0.0722 | 0.1297 |
RMS () | 0.0163 | 0.0207 | 0.0375 |
RMS () | 0.1435 | 0.5052 | 0.7779 |
RMS () | 0.4887 | 0.5309 | 0.7014 |
RMS () | 0.1639 | 0.3492 | 0.3964 |
RMS () | 5.6958 | 28.5111 | 24.9244 |
RMS () | 38.0397 | 41.9870 | 57.5554 |
RMS () | 4.6049 | 9.6346 | 11.4709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahmi, B.; Dahani, H.; Bououden, S.; Farah, R.; Rahman, M.H. Adaptive-Robust Controller for Smart Exoskeleton Robot. Sensors 2024, 24, 489. https://doi.org/10.3390/s24020489
Brahmi B, Dahani H, Bououden S, Farah R, Rahman MH. Adaptive-Robust Controller for Smart Exoskeleton Robot. Sensors. 2024; 24(2):489. https://doi.org/10.3390/s24020489
Chicago/Turabian StyleBrahmi, Brahim, Hicham Dahani, Soraya Bououden, Raouf Farah, and Mohamed Habibur Rahman. 2024. "Adaptive-Robust Controller for Smart Exoskeleton Robot" Sensors 24, no. 2: 489. https://doi.org/10.3390/s24020489