Temperature-Corrected Calibration of GS3 and TEROS-12 Soil Water Content Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Setting and Site Instrumentation
2.2. Laboratory Calibration Experiment
2.3. Evaluation Criteria to Test the Calibration and Validation Performance
3. Results and Discussion
3.1. Relationship between Apparent Dielectric Permittivity, Temperature, and Soil Water Content
3.2. Laboratory Calibration
3.3. Comparison between Spatial-Average Temperature-Corrected and Area-Wide CRNS-Based Soil Water Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture-Climate Interactions in a Changing Climate: A Review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Kim, H.; Cosh, M.H.; Bindlish, R.; Lakshmi, V. Field Evaluation of Portable Soil Water Content Sensors in a Sandy Loam. Vadose Zone J. 2020, 19, e20033. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Stein, J.; Kane, D.L. Monitoring the Unfrozen Water Content of Soil and Snow Using Time Domain Reflectometry. Water Resour. Res. 1983, 19, 1573–1584. [Google Scholar] [CrossRef]
- Zegelin, S.J.; White, I.; Jenkins, D.R. Improved Field Probes for Soil Water Content and Electrical Conductivity Measurement Using Time Domain Reflectometry. Water Resour. Res. 1989, 25, 2367–2376. [Google Scholar] [CrossRef]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Bogena, H.R.; Weuthen, A.; Huisman, J.A. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management. Sensors 2022, 22, 9792. [Google Scholar] [CrossRef]
- Pepin, S.; Livingston, N.J.; Hook, W.R. Temperature-Dependent Measurement Errors in Time Domain Reflectometry Determinations of Soil Water. Soil Sci. Soc. Am. J. 1995, 59, 38–43. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. Vadose Zone J. 2006, 5, 894–907. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Huisman, J.A.; Vrba, J.; Vereecken, H.; Bogena, H.R. Correction of Temperature and Electrical Conductivity Effects on Dielectric Permittivity Measurements with ECH2O Sensors. Vadose Zone J. 2011, 10, 582–593. [Google Scholar] [CrossRef]
- Skierucha, W.; Wilczek, A.; Szypłowska, A.; Sławiński, C.; Lamorski, K. A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity. Sensors 2012, 12, 13545–13566. [Google Scholar] [CrossRef] [PubMed]
- Vaz, C.M.P.; Jones, S.; Meding, M.; Tuller, M. Evaluation of Standard Calibration Functions for Eight Electromagnetic Soil Moisture Sensors. Vadose Zone J. 2013, 12, vzj2012-0160. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency, Electrical Conductivity and Temperature Analysis of a Low-Cost Capacitance Soil Moisture Sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
- Rüdiger, C.; Western, A.W.; Walker, J.P.; Smith, A.B.; Kalma, J.D.; Willgoose, G.R. Towards a General Equation for Frequency Domain Reflectometers. J. Hydrol. 2010, 383, 319–329. [Google Scholar] [CrossRef]
- Di Matteo, L.; Spigarelli, A.; Ortenzi, S. Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy. Sustainability 2021, 13, 227. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.; Anastasatou, M.; Moustakas, N. The Effect of Soil Iron on the Estimation of Soil Water Content Using Dielectric Sensors. Water 2020, 12, 598. [Google Scholar] [CrossRef]
- Rowlandson, T.L.; Berg, A.A.; Bullock, P.R.; Ojo, E.R.T.; McNairn, H.; Wiseman, G.; Cosh, M.H. Evaluation of Several Calibration Procedures for a Portable Soil Moisture Sensor. J. Hydrol. 2013, 498, 335–344. [Google Scholar] [CrossRef]
- Burns, T.T.; Adams, J.R.; Berg, A.A. Laboratory Calibration Procedures of the Hydra Probe Soil Moisture Sensor:Infiltration Wet-Up vs. Dry-Down. Vadose Zone J. 2014, 13, vzj2014.07.0081. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors 2017, 17, 208. [Google Scholar] [CrossRef]
- Caldwell, T.G.; Bongiovanni, T.; Cosh, M.H.; Halley, C.; Young, M.H. Field and Laboratory Evaluation of the CS655 Soil Water Content Sensor. Vadose Zone J. 2018, 17, 1–16. [Google Scholar] [CrossRef]
- Domínguez-Niño, J.M.; Bogena, H.R.; Huisman, J.A.; Schilling, B.; Casadesús, J. On the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors. Sensors 2019, 19, 3101. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, A.; Ochsner, T.E.; Feng, L.; Dyer, D.; Rossini, P.R. Calibration and Validation of Soil Water Reflectometers. Vadose Zone J. 2022, 21, e20190. [Google Scholar] [CrossRef]
- Saito, T.; Fujimaki, H.; Yasuda, H.; Inosako, K.; Inoue, M. Calibration of Temperature Effect on Dielectric Probes Using Time Series Field Data. Vadose Zone J. 2013, 12, 1–6. [Google Scholar] [CrossRef]
- Romano, N.; Nasta, P.; Bogena, H.; De Vita, P.; Stellato, L.; Vereecken, H. Monitoring Hydrological Processes for Land and Water Resources Management in a Mediterranean Ecosystem: The Alento River Catchment Observatory. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Nasta, P.; Bogena, H.R.; Sica, B.; Weuthen, A.; Vereecken, H.; Romano, N. Integrating Invasive and Non-Invasive Monitoring Sensors to Detect Field-Scale Soil Hydrological Behavior. Front. Water 2020, 2, 26. [Google Scholar] [CrossRef]
- Bogena, H.R.; Herbst, M.; Huisman, J.A.; Rosenbaum, U.; Weuthen, A.; Vereecken, H. Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability. Vadose Zone J. 2010, 9, 1002–1013. [Google Scholar] [CrossRef]
- Seyfried, M.S.; Grant, L.E.; Du, E.; Humes, K. Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor. Vadose Zone J. 2005, 4, 1070–1079. [Google Scholar] [CrossRef]
- Birchak, J.R.; Gardner, C.G.; Hipp, J.E.; Victor, J.M. High Dielectric Constant Microwave Probes for Sensing Soil Moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Fares, A.; Abbas, F.; Maria, D.; Mair, A. Improved Calibration Functions of Three Capacitance Probes for the Measurement of Soil Moisture in Tropical Soils. Sensors 2011, 11, 4858–4874. [Google Scholar] [CrossRef]
- Wraith, J.M.; Or, D. Temperature Effects on Soil Bulk Dielectric Permittivity Measured by Time Domain Reflectometry: Experimental Evidence and Hypothesis Development. Water Resour. Res. 1999, 35, 361–369. [Google Scholar] [CrossRef]
- Or, D.; Wraith, J.M. Temperature Effects on Soil Bulk Dielectric Permittivity Measured by Time Domain Reflectometry: A Physical Model. Water Resour. Res. 1999, 35, 371–383. [Google Scholar] [CrossRef]
- Gong, Y.; Cao, Q.; Sun, Z. The Effects of Soil Bulk Density, Clay Content and Temperature on Soil Water Content Measurement Using Time-Domain Reflectometry. Hydrol. Process 2003, 17, 3601–3614. [Google Scholar] [CrossRef]
- Bhuiyan, M.Z.I.; Wang, S.; Carter, J.P.; Raka, T.M. Calibration and Assessment of Capacitance-Based Soil Moisture Sensors. In Proceedings of Geo-Congress; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 754–766. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Nogueira, T.A.R.; Zepeda, S.G.C. Performance of Soil Moisture Sensors in Florida Sandy Soils. Water 2020, 12, 358. [Google Scholar] [CrossRef]
- van Straten, G.; Vos, A.; Vlaming, R.; Oosterbaan, R. Dielectric Sensors in an Automated Facility for Testing Salt Tolerance of Irrigated Field Crops. In Proceedings of the 18th World Congress of CIGR; International Commission of Agricultural and Biosystems Engineering: Beijing, China, 2014. [Google Scholar]
- Son, J.-K.; Shin, W.-T.; Cho, J.-Y. Laboratory and Field Assessment of the Decagon 5TE and GS3 Sensors for Estimating Soil Water Content in Saline-Alkali Reclaimed Soils. Commun. Soil Sci. Plant Anal. 2017, 48, 2268–2279. [Google Scholar] [CrossRef]
- Hignett, C.; Evett, S. Electrical Resistance Sensors for Soil Water Tension Estimates. In Proceedings of the International Atomic Energy Agency (IAEA), Geneva, Switzerland, 1 January–31 December 2008; pp. 123–129. [Google Scholar]
T | b | a | RMSE | R2 | |
---|---|---|---|---|---|
°C | cm3 cm−3 | ||||
GS3 | 10 | −0.297 | 0.152 | 0.005 | 0.995 |
15 | −0.222 | 0.135 | 0.019 | 0.932 | |
20 | −0.252 | 0.139 | 0.016 | 0.953 | |
25 | −0.232 | 0.131 | 0.018 | 0.946 | |
30 | −0.211 | 0.123 | 0.019 | 0.943 | |
35 | −0.196 | 0.116 | 0.017 | 0.940 | |
40 | −0.197 | 0.114 | 0.018 | 0.960 | |
TEROS-12 | 10 | ||||
15 | −0.432 | 0.193 | 0.029 | 0.765 | |
20 | −0.445 | 0.195 | 0.025 | 0.888 | |
25 | −0.443 | 0.193 | 0.029 | 0.844 | |
30 | −0.417 | 0.185 | 0.031 | 0.803 | |
35 | −0.364 | 0.170 | 0.029 | 0.776 | |
40 | |||||
GS3 | 10 | −0.406 | 0.184 | 0.004 | 0.996 |
15 | −0.549 | 0.217 | 0.005 | 0.997 | |
20 | −0.580 | 0.226 | 0.006 | 0.994 | |
25 | −0.601 | 0.233 | 0.006 | 0.994 | |
30 | −0.600 | 0.234 | 0.007 | 0.992 | |
35 | −0.579 | 0.230 | 0.007 | 0.986 | |
40 | −0.625 | 0.240 | 0.006 | 0.994 | |
TEROS-12 | 10 | −0.824 | 0.258 | 0.002 | 0.999 |
15 | −0.858 | 0.265 | 0.011 | 0.982 | |
20 | −0.838 | 0.263 | 0.010 | 0.986 | |
25 | −0.908 | 0.281 | 0.010 | 0.985 | |
30 | −0.951 | 0.292 | 0.008 | 0.989 | |
35 | −0.984 | 0.302 | 0.008 | 0.986 | |
40 | −1.036 | 0.316 | 0.008 | 0.992 |
Clay | RMSE | R2 | |
GS3 | TCC | 0.019 | 0.95 |
FC | 0.052 | 0.86 | |
TEROS-12 | TCC | 0.033 | 0.79 |
FC | 0.065 | 0.79 | |
Loam | |||
GS3 | TCC | 0.007 | 0.99 |
FC | 0.047 | 0.98 | |
TEROS-12 | TCC | 0.010 | 0.99 |
FC | 0.111 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasta, P.; Coccia, F.; Lazzaro, U.; Bogena, H.R.; Huisman, J.A.; Sica, B.; Mazzitelli, C.; Vereecken, H.; Romano, N. Temperature-Corrected Calibration of GS3 and TEROS-12 Soil Water Content Sensors. Sensors 2024, 24, 952. https://doi.org/10.3390/s24030952
Nasta P, Coccia F, Lazzaro U, Bogena HR, Huisman JA, Sica B, Mazzitelli C, Vereecken H, Romano N. Temperature-Corrected Calibration of GS3 and TEROS-12 Soil Water Content Sensors. Sensors. 2024; 24(3):952. https://doi.org/10.3390/s24030952
Chicago/Turabian StyleNasta, Paolo, Francesca Coccia, Ugo Lazzaro, Heye R. Bogena, Johan A. Huisman, Benedetto Sica, Caterina Mazzitelli, Harry Vereecken, and Nunzio Romano. 2024. "Temperature-Corrected Calibration of GS3 and TEROS-12 Soil Water Content Sensors" Sensors 24, no. 3: 952. https://doi.org/10.3390/s24030952