Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection
Abstract
1. Introduction
2. Silicon Photomultipliers in Neutrino Telescopes: Advantages and Disadvantages
- Sensitivity spanning from ultraviolet to near-infrared, ideal for Cherenkov light;
- No need for a high-voltage supply exceeding 100 V, yet comparable gains to traditional PMTs (105–106) are achieved;
- Immunity to electromagnetic fields;
- The SiPMs can be packed, making it possible to make adjustable expansions at a relatively lower cost compared to PMTs [16];
- Excellent single-photon resolution [17];
- Mechanically more robust than PMTs;
- Resilience to stray light due to solid-state technology;
3. Silicon Photomultiplier Dark Count Rate Challenge
4. Dark Count Rate Filtering
5. Implementation
5.1. Time-to-Digital Converter Implementation
5.2. Dark Count Rate Filter Implementation
| Listing 1. Verilog implementation of the DCR filter testbench. If an event enters during the 12 ns window, the full event is acquired. |
![]() |
5.3. Testbench Implementation
6. First Results
6.1. Test with Field-Programmable-Gate-Array-Generated Input Pulses
6.2. Test with External Pulse Generator
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. JINST J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; AGuilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alvez JR, S.; Amin, N.M.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G 2016, 43, 084001. [Google Scholar] [CrossRef]
- Fang, K.; Kotera, K.; Miller, M.C.; Murase, K.; Oikonomou, F. Identifying Ultrahigh-Energy Cosmic-Ray Accelerators with Future Ultrahigh-Energy Neutrino Detectors. JCAP J. Cosmol. Astropart. Phys. 2016, 12, 17. [Google Scholar] [CrossRef]
- Acerbi, F.; Gundacker, S. Understanding and simulating SiPMs. Nucl. Instrum. Method A 2019, 926, 16–35. [Google Scholar] [CrossRef]
- Hu, F.; Li, Z.; Xu, D. Exploring a PMT+SiPM hybrid optical module for next generation neutrino telescopes. PoS 2021, 395, 1043. [Google Scholar] [CrossRef]
- Aiello, S.; Akrame, S.E.; Ameli, F.; Anassontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardi, M.; Aublin, J.; et al. Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. JINST J. Instrum. 2018, 13, P05035. [Google Scholar] [CrossRef]
- Mazziotta, M.N.; Pillera, R. The light tracker based on scintillating fibers with SiPM readout of the Zire instrument on board the NUSES space mission. PoS 2023, ICRC2023, 83. [Google Scholar] [CrossRef]
- Brogi, P.; Bigongiari, G.; Checchia, C.; Collazuol, G.; Dalla Betta, G.F.; Ficorella, A.; Marrocchesi, P.S.; Morsani, F.; Musacci, M.; Torilla, G.; et al. APiX, a two-tier avalanche pixel sensor for digital charged particle detection. Nucl. Instrum. Meth. A 2020, 958, 162546. [Google Scholar] [CrossRef]
- Pancheri, L.; Ficorella, A.; Brogi, P.; Collazuol, G.; Dalla Betta, G.-F.; Marrocchesi, P.S.; Morsani, F.; Ratti, L.; Savoy-Navarro, A.; Sulaj, A. First Demonstration of a Two-Tier Pixelated Avalanche Sensor for Charged Particle Detection. IEEE J. Electron. Devices Soc. 2017, 5, 404–410. [Google Scholar] [CrossRef]
- Donati, S. Avalanche Photodiode, SPAD, and SiPM. In Photodetectors: Devices, Circuits and Applications; IEEE: Piscataway, NJ, USA, 2021; pp. 175–220. [Google Scholar] [CrossRef]
- Saveliev, V. Silicon Photomultiplier—New Era of Photon Detection. In Advances in Optical and Photonic Devices; Kim, K.Y., Ed.; IntechOpen: Rijeka, Croatia, 2010; Chapter 14. [Google Scholar] [CrossRef]
- Acerbi, F.; Ferri, A.; Gola, A.; Cazzanelli, M.; Pavesi, L.; Zorzi, N.; Piemonte, C.; Zorzi, N.; Piemonte, C. Characterization of Single-Photon Time Resolution: From Single SPAD to Silicon Photomultiplier. IEEE Trans. Nucl. Sci. 2014, 61, 2678–2686. [Google Scholar] [CrossRef]
- Aiello, S.; Albert, A.; Alves Garre, S.; Aly, Z.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anguita, M.; Anton, G.; et al. Architecture and performance of the KM3NeT front-end firmware. J. Astron. Telesc. Instrum. Syst. 2021, 7, 016001. [Google Scholar] [CrossRef]
- Sun, Y.; Maricic, J. SiPMs characterization and selection for the DUNE far detector photon detection system. JINST J. Instrum. 2016, 11, C01078. [Google Scholar] [CrossRef]
- Yebras, J.; Antoranz, P.; Miranda, J. Single Photon Counting with Silicon Photomultipliers, shortening systems and incoherent illumination. J. Eur. Opt. Soc. Rapid Publ. 2012, 7, 12014. [Google Scholar] [CrossRef]
- Gola, A.; Acerbi, F.; Capasso, M.; Marcante, M.; Mazzi, A.; Paternoster, G.; Piemonte, C.; Regazzoni, V.; Zorzi, N. NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler. Sensors 2019, 19, 308. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, A.; Paternoster, G.; Gola, A. SiPM Overview: Status and Trends. Communication to the International Workshop on New Photon-Detectors. 2018. Available online: https://indico.ipmu.jp/event/166/contributions/2809/attachments/2133/2596/FBKAcerbi_-_SiPM_overview_v5a.pdf (accessed on 25 January 2024).
- Korpar, S. SiPMs-Technologies and Timing. Available online: https://indico.cern.ch/event/999817/contributions/4253051/attachments/2240249/3798094/TF4-Korpar.pd (accessed on 25 January 2024).
- Collazuol, G.; Bisogni, M.G.; Marcatili, S.; Piemonte, C.; Guerra, A.D. Studies of silicon photomultipliers at cryogenic temperatures. Nucl. Instrum. Method A 2011, 628, 389–392. [Google Scholar] [CrossRef]
- Engelmann, E. Dark Count Rate of Silicon Photomultipliers: Metrological Characterization and Suppression; Cuvillier Verlag: Gottingen, Germany, 2018. [Google Scholar]
- Aiello, S.; Albert, A.; Alshamsi, M.; Garre, S.A.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. [KM3NeT Collaboration]. The KM3NeT multi-PMT optical module. JINST J. Instrum. 2022, 17, P07038. [Google Scholar] [CrossRef]
- Bagley, P.; Craig, J.; Holford, A.; Jamieson, A.; Niedzielski, T.; Priede, I.G.; de Bell, M.; Koopstra, J.; Lim, G.; de Wolf, E.; et al. KM3NeT: Technical Design Report for a Deep-Sea Research Infrastructure in the Mediterranean Sea Incorporating a Very Large Volume Neutrino Telescope. 2009. Available online: https://www.roma1.infn.it/people/capone/KM3NeT/KM3NeT-TDR.pdf (accessed on 24 June 2023).
- Nagornov, O.; Bay, R.; Chirkin, D.; He, Y.; Miocinovic, P.; Richards, A.; Woschnagg, K.; Koci, B.; Zagorodnov, V.; Pricet, P.B.; et al. Temperature profile for glacial ice at the South Pole: Implications for life in a nearby subglacial lake. Proc. Natl. Acad. Sci. USA 2002, 99, 7844–7847. [Google Scholar] [CrossRef]
- Basu, V.; Icecube-Gen2. A multi-PMT optical sensor for IceCube-Gen2. JINT J. Instrum. 2021, 16, 11 C11009. [Google Scholar] [CrossRef]
- Aiello, S.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aublin, J.; Bagatelas, C.; Barbarino, G.; et al. [KM3NeT Collaboration]. KM3NeT front-end and readout electronics system: Hardware, firmware and software. JATIS J. Astron. Telesc. Instrum. Syst. 2019, 5, 046001. [Google Scholar] [CrossRef]
- Correa, M.; Pérez, F. Characterization and optimization of an optical and electronic architecture for photon counting. J. Phys. 2018, 1002, 012002. [Google Scholar] [CrossRef]
- Kalisz, J. Review of methods for time interval measurements with picosecond resolution. Metrologia 2004, 41, 17. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Real, D.; Calvo, D.; Zornoza, J.d.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection. Sensors 2024, 24, 2084. https://doi.org/10.3390/s24072084
Real D, Calvo D, Zornoza JdD, Manzaneda M, Gozzini R, Ricolfe-Viala C, Lajara R, Albiol F. Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection. Sensors. 2024; 24(7):2084. https://doi.org/10.3390/s24072084
Chicago/Turabian StyleReal, Diego, David Calvo, Juan de Dios Zornoza, Mario Manzaneda, Rebecca Gozzini, Carlos Ricolfe-Viala, Rafael Lajara, and Francisco Albiol. 2024. "Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection" Sensors 24, no. 7: 2084. https://doi.org/10.3390/s24072084
APA StyleReal, D., Calvo, D., Zornoza, J. d. D., Manzaneda, M., Gozzini, R., Ricolfe-Viala, C., Lajara, R., & Albiol, F. (2024). Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection. Sensors, 24(7), 2084. https://doi.org/10.3390/s24072084


