A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs)
Abstract
:1. Introduction
2. Sensor Structure and Theory
2.1. Structure and Fabrication of Sensor
2.2. Capillary Condensation
- θ–Contact angle of liquor and wall of capillary pore.
- VL–The molecular volume of liquor.
- γ–The surface tension of liquor.
- R–Gas constant (R = 8.314 J × (mol × K)−1).
- T–Absolute temperature (K).
- r–Kelvin radius of the capillary pores.
2.3. Detection Circuit
3. Experiment
4. Results and Discussion
4.1. Capacitance Sensitivity to RH
4.2. Output Voltage Sensitivity to RH
4.3. Comparison of CNTs Sensor and Common Sensor
4.4. Comparison of different distances between two plates
4.5. Repeatable Responses of the Sensor
4.6. The Response and Recovery Characters
4.7. The Temperature Characters of the Sensor
5. Conclusions
References
- Su, P.G.; Huang, S.C. Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly (2-acrylamido- 2-methylpropane sulfonate). Sens. Actuat. B 2006, 113, 142–149. [Google Scholar]
- Zhang, Y.S.; Yu, K.; Xu, R.L.; Jiang, D.S.; Luo, L.Q.; Zhu, Z.Q. Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens. Actuat. A 2005, 120, 142–146. [Google Scholar]
- Schubert, P.J.; Nevin, J.H. A Polyimide-Based Capacitive Humidity Sensor. IEEE Trans. Electron. Devic. 1985, 7, 1220–1223. [Google Scholar]
- Qu, W.; Wlodarski, W.; Meyer, J.U. Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens. Actuat. B 2000, 64, 76–82. [Google Scholar]
- Xu, Y.Y.; Li, X.J.; He, J.T.; Hu, X.; Wang, H.Y. Capacitive humidity sensing properties of hydrothermally-etched silicon nano-porous pillar array. Sens. Actuat. B 2005, 105, 119–222. [Google Scholar]
- Yarkin, D.G. Impedance of humidity sensitive metal/porous silicon/n-Si structures. Sens. Actuat. A 2003, 107, 1–6. [Google Scholar]
- Lee, S.P.; Lee, J.G.; Chowdhury, S. CMOS humidity sensor system using carbon nitride film as sensing materials. Sensors 2008, 8, 2662–2672. [Google Scholar]
- Lee, S.P. Synthesis and characterization of carbon nitride films for micro humidity sensors. Sensors 2008, 8, 1508–1518. [Google Scholar]
- Arshaka, K.; Twomey, K.; Egan, D. A Ceramic thick film humidity sensor based on MnZn ferrite. Sensors 2002, 2, 50–61. [Google Scholar]
- Dickey, E.C.; Varghese, O.K.; Ong, K.G.; Gong, D.; Paulose, M.; Grimes, C.A. Room temperature ammonia and humidity sensing using highly ordered nanoporous alumina films. Sensors 2002, 2, 91–110. [Google Scholar]
- Molla, J.; Gonzailez, M.; Vila, R.; Ibarra, A. Effect of humidity on microwave dielectric closes of porous alumina. J. Appl. Phys. 1999, 3, 1727–1730. [Google Scholar]
- Lijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar]
- Ong, K.G.; Grimes, C.A. A Carbon nanotube-based sensor for CO2 monitoring. Sensors 2001, 1, 193–205. [Google Scholar]
- Kim, S. CNT sensors for detecting gases with low adsorption energy by ionization. Sensors 2006, 6, 503–513. [Google Scholar]
- Li, J.; Lu, Y.J.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters 2003, 7, 929–933. [Google Scholar]
- Tsai, T.Y.; Tai, N.H.; Lin, I.N. Characteristics of carbon nanotube electron fielde mission devices prepared by LTFF process. Diam. Relat. Mater. 2004, 13, 982–986. [Google Scholar]
- Pirio, G.; Legagneux, P.; Pribat, D.; Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I. Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode. Nanotechnology 2002, 13, 1–4. [Google Scholar]
- Yan, Q.; Zhou, G.; Hao, S.G.; Wu, J.; Duan, W.H. Mechanism of nanoelectronic switch based on telescoping carbon nanotubes. Appl. Phys. Lett. 2006, 88, 173107. [Google Scholar]
- Gutierrez, R.; Fagas, G.; Cuniberti, G.; Grossmann, F.; Schmidt, R.; Richter, K. Theory of an all-carbon molecular switch. Phys. Rev. B 2002, 11, 113410. [Google Scholar]
- Chen, Y.; Jung, G.Y.; Ohlberg, D.A.A.; Li, X.M.; Stewart, D.R.; Jeppesen, J.O.; Nielsen, K.A.; Stoddart, J.F.; Williams, R.S. Nanoscale molecular-switch crossbar circuits. Nanotechnology 2003, 14, 462–468. [Google Scholar]
- Baughman, R.H. Carbon nanotube actuators. Science 1999, 284, 1339–1344. [Google Scholar]
- Tahhan, M.; Truong, V.T.; Spinks, G.M.; Wallace, G.G. Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 2003, 12, 626–632. [Google Scholar]
- Yeow, J.T.W.; She, J.P.M. Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Inst. Phys. Pub. 2006, 17, 5441–5448. [Google Scholar]
- Varghese, O.K.; Kichambre, P.D.; Gong, D.; Ong, K.G.; Dickey, E.C.; Grimes, C.A. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuat. B 2001, 81, 32–41. [Google Scholar]
- Neimark, A.V.; Ravikovitch, P.I. Capillary condensation in MMS and pore structure characterization. Micropor. Mesopor. Mat. 2001, 44–45, 697–707. [Google Scholar]
- Boucher, E.A. Review Porous materials: structure, properties and capillary phenomena. J. Mater. Sci. 1976, 11, 1734–1750. [Google Scholar]
RH(%) | r(nm) |
---|---|
11 | 0.4906x |
23 | 0.7369x |
33 | 1.095x |
43 | 1.283x |
52 | 1.656x |
67 | 2.704x |
75 | 3.764x |
86 | 7.180x |
97 | 35.55x |
Saturated saline solutions | 15 °C RH(%) | 20 °C RH(%) | 25 °C RH(%) |
---|---|---|---|
LiCl | 13 | 12 | 11 |
CH3COOK | 23 | 23 | 23 |
MgCl2 | 33 | 33 | 33 |
K2CO3 | 45 | 44 | 43 |
Mg(NO3)2 | 53 | 52 | 52 |
CuCl2 | 68 | 68 | 67 |
NaCl | 75 | 75 | 75 |
KCl | 87 | 86 | 86 |
K2SO4 | 97 | 97 | 97 |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, W.-P.; Zhao, Z.-G.; Liu, X.-W.; Zhang, Z.-X.; Suo, C.-G. A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs). Sensors 2009, 9, 7431-7444. https://doi.org/10.3390/s90907431
Chen W-P, Zhao Z-G, Liu X-W, Zhang Z-X, Suo C-G. A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs). Sensors. 2009; 9(9):7431-7444. https://doi.org/10.3390/s90907431
Chicago/Turabian StyleChen, Wei-Ping, Zhen-Gang Zhao, Xiao-Wei Liu, Zhong-Xin Zhang, and Chun-Guang Suo. 2009. "A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs)" Sensors 9, no. 9: 7431-7444. https://doi.org/10.3390/s90907431
APA StyleChen, W. -P., Zhao, Z. -G., Liu, X. -W., Zhang, Z. -X., & Suo, C. -G. (2009). A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs). Sensors, 9(9), 7431-7444. https://doi.org/10.3390/s90907431