Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolates
Strain | Isolated Strains (No.) | % | |
---|---|---|---|
Gram-Positive Bacteria | Staphylococcus aureus | 14 | 11.2 |
CoNS * | 22 | 17.6 | |
Enterococcus spp. | 1 | 0.8 | |
Kokuria spp. | 2 | 1.60 | |
Streptococcus pneumoniae | 2 | 1.60 | |
Micrococcus spp. | 8 | 6.40 | |
Gram-Negative Bacteria | Pseudomonas aeruginosa | 31 | 24.8 |
Escherichia coli | 8 | 6.4 | |
Klebsiella spp. ^ | 7 | 5.6 | |
Other Enterobacteriaceae § | 7 | 5.6 | |
other non-fermenting Gram-negative bacteria # | 10 | 8.0 | |
Vibrionaceae | 2 | 1.6 | |
Fungi | Candida spp. | 6 | 4.8 |
Aspergillus niger | 5 | 4 |
2.2. Susceptibility to Antibiotics
Strains (n°) | AMP * (10 μg) | AMC * (20/10 μg) | CTX * (5 μg) | CAZ * (10 μg) | FEP * (30 μg) | IMI * (10 μg) | GEN * (10 μg) | AMK * (30 μg) | CIP * (5 μg) | SXT * (1.25/23.75 μg) | FOX * (30 μg) | ERI * (15 μg) | VAN ** | LZD * (10 μg) | RIF * (5 μg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enterobacteriaceae (21) | 0 | 0 | 90.5 | 90.5 | 95.2 | 100 | 100 | 100 | 85.7 | 85.7 | nt | nt | nt | nt | nt |
P. aeruginosa (31) | nt | nt | nt | 87.0 | 87.0 | 100 | 84.0 | 97.0 | 100 | nt | nt | nt | nt | nt | nt |
MRSA (3) | nt | nt | nt | nt | nt | nt | 100 | nt | 66.6 | 100 | 0 | 33.4 | 66.6 | 100 | 100 |
MSSA (11) | nt | nt | nt | nt | nt | nt | 100 | nt | 100 | 100 | 100 | 100 | 72.7 | 100 | 100 |
CoNS (22) | nt | nt | nt | nt | nt | nt | 86.0 | nt | 77.0 | 86.0 | 54.0 | 77.0 | 90.9 | 91.0 | 91.0 |
2.3. Biofilm Assay
Strain | Producers | Slight Producers | Non Producers | |||
---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | |
S. aureus (14) * | 9 | 64 | - | - | 5 | 36 |
CoNS (22) (*) | 9 | 41 | - | - | 13 | 59 |
P. aeruginosa (31) ** | 1 | 3 | 7 | 23 | 23 | 74 |
E. coli (8) ** | 2 | 25 | 3 | 37.5 | 3 | 37.5 |
Klebsiella spp. (7) ** | 0 | 0 | 6 | 86 | 1 | 14 |
2.4. Antibacterial Activity of D. Tertiolecta and P. Subcapitata Extracts
Algae | Pathogens | MIC cells\mL | ||
---|---|---|---|---|
MIC Range | MIC 50 (Mean ± SD) | MIC 90 (Mean ± SD) | ||
D. tertiolecta | S. aureus (14) | 2.8 × 109–1.1 × 1010 | 5.6 × 109 (5.6 × 109 ± 0) | 1.1 × 1010 (1.1 × 1010 ± 0) |
P. aeruginosa (31) | 1.4 × 109–5.6 × 109 | 2.8 × 109 (4.2 × 109 ± 2.0 × 109) | 5.6 × 109 (8.4 × 109 ± 4.0 × 109) | |
Enterobacteriaceae (14) * | 1.1 × 1010–2.2 × 1010 | 2.2 × 1010 (1.7 × 109 ± 8.0 × 109) | >2.2 × 1010 (2.3 × 1010 ± 0) | |
P. subcapitata | S. aureus (14) | 1.6 × 109–1.2 × 1010 | 6.2 × 109 (4.7 × 109 ± 2.2 × 109) | 1.2 × 1010 (7.8 × 109 ± 6.6 × 109) |
P. aeruginosa (31) | 6.2 × 109–1.2 × 1010 | 6.2 × 109 (3.9 × 109 ± 3.3 × 109) | 6.2 × 109 (4.7 × 109 ± 2.2 × 109) | |
Enterobacteriaceae (14)* | 6.2 × 109–1.2 × 1010 | 6.2 × 109 (5.9 × 109 ± 4.6 × 109) | 1.2 × 1010 (9.4 × 109 ± 4.4 × 109) |
3. Discussion
4. Experimental Section
4.1. Pathogenic Micro-Organisms Collection
4.2. Bacterial Strains and Growth Conditions
4.3. Biofilm Assay
4.4. Marine and Freshwater Algae
4.5. Bacterial Susceptibility (MIC Determination)
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rosenfeld, R.M.; Brown, L.; Cannon, C.R.; Dolor, R.J.; Ganiats, T.G.; Hannley, M.; Kokemueller, P.; Marcy, S.M.; Roland, P.S.; Shiffman, R.N.; et al. Clinical practice guideline: Acute otitis externa. Otolaryngol. Head Neck Surg. 2006, 134, S4–S23. [Google Scholar] [CrossRef] [PubMed]
- Sander, R. Otitis externa: A practical guide to treatment and prevention. Am. Fam. Phys. 2001, 63, 927–936. [Google Scholar]
- McWilliams, C.J.; Smith, C.H.; Goldman, R.D. Acute otitis externa in children. Can. Fam. Phys. 2012, 58, 1222–1224. [Google Scholar]
- Pabla, L.; Jindal, M.; Latif, K. The management of otitis externa in UK general practice. Eur. Arch. Otorhinolaryngol. 2012, 269, 753–756. [Google Scholar] [PubMed]
- Jayakar, R.; Sanders, J.; Jones, E. A study of acute otitis externa at Wellington Hospital, 2007–2011. Australas. Med. J. 2014, 7, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Kepnes, L.J. Initial impact of the acute otitis externa clinical practice guideline on clinical care. Otolaryngol. Head Neck Surg. 2011, 145, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Albera, R.; Rossi, G. Otorinolaringoiatria, 3rd ed.; Minerva Medica: Torino, Italy, 2012; pp. 1–82. [Google Scholar]
- Mösges, R.; Nematian-Samani, M.; Eichel, A. Treatment of acute otitis externa with ciprofloxacin otic 0.2% antibiotic ear solution. Ther. Clin. Risk Manag. 2011, 7, 325–336. [Google Scholar]
- Schaefer, P.; Baugh, R.F. Acute otitis externa: An update. Am. Fam. Phys. 2012, 86, 1055–1061. [Google Scholar]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Proksch, P.; Edrada-Ebel, R.A.; Ebel, R. Drugs from the sea—Opportunities and obstacles. Mar. Drugs 2003, 1, 5–17. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1994, 11, 355–394. [Google Scholar] [CrossRef] [PubMed]
- Fenical, W.; Jensen, P.R. Marine microorganisms: A new biomedical resource. In Marine Biotechnology. Pharmaceutical and Bioactive Natural Products; Attaway, D.H., Zaborsky, O.R., Eds.; Plenum Press: New York, NY, USA, 1993; Volume 1, pp. 419–457. [Google Scholar]
- Shmizu, Y. Microalgal metabolites. Chem. Rev. 1993, 93, 1685–1698. [Google Scholar] [CrossRef]
- Shimizu, Y. Dinoflagellates as sources of bioactive molecules. In Marine Biotechnology. Pharmaceutical and Bioactive Natural Products; Attaway, D.H., Zaborsky, O.R., Eds.; Plenum Press: New York, NY, USA, 1993; Volume 1, pp. 391–410. [Google Scholar]
- Butcher, R.W. Part I: Introduction and Chlorophyceae, Ser. IV. In An Introductory Account of the Smaller Algae of British Coastal Waters; Ministry of Agriculture, Fisheries and Food, Fishery Investigations: London, UK, 1959; pp. 1–74. [Google Scholar]
- Passarelli, P.; Sbalchiero, A. Test di Inibizione Algale con Selenastrum capricornutum o Pseudokirchneriella subcapitata. In Notiziario dei Metodi Analitici N.1; IRSA-CNR: Roma, Italy, 2005; pp. 1–8. [Google Scholar]
- Orias, F.; Simon, L.; Perrodin, Y. Experimental assessment of the bioconcentration of 15N-tamoxifen in Pseudokirchneriella subcapitata. Chemosphere 2015, 122, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Pane, L.; Mariottini, G.L.; Giacco, E. Ecotoxicological assessment of the micelle encapsulator F-500. Ecotoxicol. Environ. Saf. 2015, 118, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Ibáñez, E.; Cifuentes, A.; Reglero, G.; Santoyo, S. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J. Food Prot. 2006, 69, 2471–2477. [Google Scholar] [PubMed]
- Mendiola, J.A.; Santoyo, S.; Cifuentes, A.; Reglero, G.; Ibáñez, E.; Señoráns, F.J. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J. Food Prot. 2008, 71, 2138–2143. [Google Scholar] [PubMed]
- Srinivasakumar, K.P.; Rajashekhar, M. In vitro studies on bactericidal activity and sensitivity pattern of isolated marine microalgae against selective human bacterial pathogens. Indian J. Sci. Technol. 2009, 2, 16–23. [Google Scholar]
- Chang, T.; Ohta, S.; Ikegami, N.; Miyata, H.; Kashimoto, T.; Kondo, M. Antibiotic substances produced by a marine green alga, Dunaliella primolecta. Bioresour. Technol. 1993, 44, 149–153. [Google Scholar] [CrossRef]
- Ohta, S.; Shiomi, Y.; Kawashima, A.; Aozasa, O.; Nakao, T.; Nagate, T.; Kitamura, K.; Miyata, H. Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. J. Appl. Phycol. 1995, 7, 121–127. [Google Scholar] [CrossRef]
- Sánchez-Saavedra, M.P.; Licea-Navarro, A.; Bernáldez-Sarabia, J. Evaluación de la actividad antibacteriana de diferentes especies de fitoplancton. Rev. Biol. Mar. Oceanogr. 2010, 45, 146–151. [Google Scholar] [CrossRef]
- Kaushik, V.; Malik, T.; Saeed, S.R. Interventions for acute otitis externa. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Vlastarakos, P.V.; Nikolopoulos, T.P.; Maragoudakis, P.; Tzagaroulakis, A.; Ferekidis, E. Biofilms in ear, nose, and throat infections: How important are they? Laryngoscope 2007, 117, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Lòpez, A.; Rico, M.; Santana-Casiano, J.M.; Gonzàlez-Dàvila, M. Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ. Sci. Pullut. Res. Int. 2015, 22, 14820–14828. [Google Scholar] [CrossRef] [PubMed]
- Coppo, E.; Marchese, A. Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Pratt, R.H. Studies on Chlorella vulgaris V: Some properties of the growth inhibitor formed by Chlorella cells. Am. J. Bot. 1942, 29, 142–148. [Google Scholar] [CrossRef]
- Duff, D.C.B.; Bruce, D.L.; Antia, N.J. The antibacterial activity of planktonic algae. Can. J. Microbiol. 1966, 12, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Lustigman, B. Comparison of antibiotic production from four ecotypes of the marine alga, Dunaliella. Bull. Environ. Contam. Toxicol. 1988, 40, 18–22. [Google Scholar] [PubMed]
- Mayer, A.M.S.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573. [Google Scholar] [PubMed]
- Katircioglu, H.; Beyatli, Y.; Aslim, B.; Yüksekdag, Z.; Atici, T. Screening for antimicrobial agent production of some microalgae in freshwater. Internet J. Microbiol. 2005, 2, 1–5. [Google Scholar]
- Amaro, H.M.; Guedes, A.C.; Malcata, F.X. Antimicrobial activities of microalgae: An invited review. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; pp. 1272–1280. [Google Scholar]
- Sanmukh, S.; Bruno, B.; Ramakrishnan, U.; Khairnar, K.; Swaminathan, S.; Paunikar, W. Bioactive compounds derived from microalgae showing antimicrobial activities. J. Aquac. Res. Dev. 2014, 5. [Google Scholar] [CrossRef]
- Encarnação, T.; Pais, A.A.C.C.; Campos, M.G.; Burrows, H.D. Cyanobacteria and microalgae: A renewable source of bioactive compounds and other chemicals. Sci. Prog. 2015, 98, 145–168. [Google Scholar] [PubMed]
- Li, S.S.; Tsai, H.J. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol. 2009, 26, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.B.; Connan, S. Marine algae: A source of biomass for biotechnological applications. Method Mol. Biol. 2015, 1308. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. Document M02-A11; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. Document M07-A9; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 4.0. 2014. Available online: http//www.eucast.org/clinical_breakpoints/ (accessed on 19 June 2014).
- Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of coagulase-negative staphylococci (CoNS) to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [PubMed]
- Roveta, S.; Marchese, A.; Schito, G.C. Activity of daptomycin on biofilms produced on a plastic support by Staphylococcus spp. Int. J. Antimicrob. Agents 2008, 31, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Baldassarri, L.; Montanaro, L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 2001, 39, 2151–2156. [Google Scholar] [CrossRef] [PubMed]
- Walne, P.R. Experiments in the large-scale culture of the larvae of Ostrea edulis L. In Fishery Investigations Series II; Ministry of Agriculture, Fisheries and Food: London, UK, 1966. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pane, G.; Cacciola, G.; Giacco, E.; Mariottini, G.L.; Coppo, E. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis. Mar. Drugs 2015, 13, 6440-6452. https://doi.org/10.3390/md13106440
Pane G, Cacciola G, Giacco E, Mariottini GL, Coppo E. Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis. Marine Drugs. 2015; 13(10):6440-6452. https://doi.org/10.3390/md13106440
Chicago/Turabian StylePane, Gianluca, Gabriele Cacciola, Elisabetta Giacco, Gian Luigi Mariottini, and Erika Coppo. 2015. "Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis" Marine Drugs 13, no. 10: 6440-6452. https://doi.org/10.3390/md13106440
APA StylePane, G., Cacciola, G., Giacco, E., Mariottini, G. L., & Coppo, E. (2015). Assessment of the Antimicrobial Activity of Algae Extracts on Bacteria Responsible of External Otitis. Marine Drugs, 13(10), 6440-6452. https://doi.org/10.3390/md13106440