Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models
Abstract
:1. Introduction
2. Results
2.1. Xyloketal B Treatment Reduces Body Weight, Fat Weight, Liver Index, and Body Mass Index Without Influencing Food Intake
2.2. Xyloketal B Treatment Improves Hepatic Histology
2.3. Xyloketal B Ameliorates Lipid Accumulation
2.4. Xyloketal B Reduces the Expression of Lipid Metabolism-Related Molecules
2.5. Xyloketal B Reduces Intracellular Lipid Accumulation via Activation of the SREBP-1c Signaling Pathway
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Protocol
4.2. Chemicals
4.3. Assessment of Weight and Serum Biochemical Parameters
4.4. Assessment of Liver TG and CHOL
4.5. Histological Analysis of Liver Tissue
4.6. Cell Culture and Treatment Protocols
4.7. Cell Viability Assay
4.8. Evaluation of Lipid Accumulation and TG Content
4.9. RNA Isolation, Reverse Transcription, and Real-Time PCR
4.10. Western Blot Analysis
4.11. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Akabame, S.; Hamaguchi, M.; Tomiyasu, K.; Tanaka, M.; Kobayashi-Takenaka, Y.; Nakano, K.; Oda, Y.; Yoshikawa, T. Evaluation of vulnerable coronary plaques and non-alcoholic fatty liver disease (nafld) by 64-detector multislice computed tomography (msct). Circ. J. Off. J. Jpn. Circ. Soc. 2008, 72, 618–625. [Google Scholar] [CrossRef]
- Ali, R.; Cusi, K. New diagnostic and treatment approaches in non-alcoholic fatty liver disease (nafld). Ann. Med. 2009, 41, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Wong, G.L.; Chim, A.M.; Tse, A.M.; Tsang, S.W.; Hui, A.Y.; Choi, P.C.; Chan, A.W.; So, W.Y.; Chan, F.K.; et al. Validation of the nafld fibrosis score in a chinese population with low prevalence of advanced fibrosis. Am. J. Gastroenterol. 2008, 103, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.S.; Keeffe, E.B. Nafld and nash: Important diseases before and after liver transplantation. Hepatology 2001, 34, 842–843. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Cui, A.; Xue, Y.; Cui, Y.; Dong, X.; Gao, Y.; Yang, H.; Fang, F.; Chang, Y. Hepatic differentiated embryo-chondrocyte expressed gene 1 (dec1) inhibits sterol regulatory element-binding protein-1c (srebp-1c) expression and alleviates fatty liver phenotype. J. Biol. Chem. 2014, 289, 23332–23342. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.J.; Kuo, K.K.; Shin, S.J.; Yang, Y.H.; Lin, W.Y.; Yang, J.F.; Chiu, C.C.; Chuang, W.L.; Tsai, T.R.; Yu, M.L. Significant correlations between severe fatty liver and risk factors for metabolic syndrome. J. Gastroenterol. Hepatol. 2007, 22, 2118–2123. [Google Scholar] [CrossRef] [PubMed]
- Chitturi, S.; Farrell, G.C.; Hashimoto, E.; Saibara, T.; Lau, G.K.; Sollano, J.D. Non-alcoholic fatty liver disease in the asia-pacific region: Definitions and overview of proposed guidelines. J. Gastroenterol. Hepatol. 2007, 22, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, E.; Yatsuji, S.; Tobari, M.; Taniai, M.; Torii, N.; Tokushige, K.; Shiratori, K. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J. Gastroenterol. 2009, 44, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Mookkan, J.; De, S.; Shetty, P.; Kulkarni, N.M.; Devisingh, V.; Jaji, M.S.; Lakshmi, V.P.; Chaudhary, S.; Kulathingal, J.; Rajesh, N.B.; et al. Combination of vildagliptin and rosiglitazone ameliorates nonalcoholic fatty liver disease in c57bl/6 mice. Indian J. Pharmacol. 2014, 46, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, G.; Bugianesi, E.; Forlani, G.; Cerrelli, F.; Lenzi, M.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.; Melchionda, N. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003, 37, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Huo, T.I.; Cheng, H.Y.; Tsai, J.C.; Liao, J.W.; Lee, M.S.; Qin, X.M.; Hsieh, M.T.; Pao, L.H.; Peng, W.H. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced nafld mice. PLoS ONE 2014, 9, e96969. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Shyy, J.Y.; Martins-Green, M. Second-hand smoke stimulates lipid accumulation in the liver by modulating ampk and srebp-1. J. Hepatol. 2009, 51, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.M.; Lustig, R.H. The role of fructose in the pathogenesis of nfl and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Yang, Q.H.; Han, L.; Zhang, Y.P.; Liu, Y.Z.; Jin, L.; Yan, H.Z. Effects of soothing liver and invigorating spleen recipes on srebp-1c, scd-1 mrna and proteins expression in hepatocytes of nafld rats. J. Chin. Med. Mater. 2014, 37, 80–86. [Google Scholar]
- Huang, H.; Mcintosh, A.L.; Martin, G.G.; Petrescu, A.D.; Landrock, K.K.; Landrock, D.; Kier, A.B.; Schroeder, F. Inhibitors of Fatty Acid Synthesis Induce PPARα-Regulated Fatty Acid β-Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.S.; Cardoso, J.F.; Vannucchi, H.; Zucoloto, S.; Jordao, A.A. Fructose and nafld: Metabolic implications and models of induction in rats. Acta Cir. Bras. Soc. Bras. Para Desenvolv. Pesqui. Cir. 2011, 26 (Suppl. 2), 45–50. [Google Scholar] [CrossRef]
- Fusetani, N. Drugs from the Sea; Karger Medical and Scientific Publishers: Basel, Switzerland, 2000. [Google Scholar]
- Pettigrew, J.D.; Wilson, P.D. Synthesis of xyloketal a, b, c, d, and g analogues. J. Org. Chem. 2006, 71, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Yang, H.; Li, Z.; Huang, Y.; Xu, Z.; Lin, Y.; Xiang, Q.; Pang, J. A validated high-performance liquid chromatographic method with diode-array detection for the estimation of xyloketal b in rat plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 885–886, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, X.; Feng, S.; Jiang, G.; Luo, J.; Zhou, S.; Vrijmoed, L.; Jones, E.G.; Krohn, K.; Steingröver, K. Five unique compounds: Xyloketals from mangrove fungus xylaria sp. From the south china sea coast. J. Org. Chem. 2001, 66, 6252–6256. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, Y.; Xiang, Q.; Pei, Z.; Liu, X.; Lu, B.; Chen, L.; Wang, G.; Pang, J.; Lin, Y. Design and synthesis of novel xyloketal derivatives and their vasorelaxing activities in rat thoracic aorta and angiogenic activities in zebrafish angiogenesis screen. J. Med. Chem. 2010, 53, 4642–4653. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Yao, X.L.; Liu, Z.; Zhang, H.; Li, W.; Li, Z.; Wang, G.L.; Pang, J.; Lin, Y.; Xu, Z.; et al. Protective effects of xyloketal b against mpp+-induced neurotoxicity in caenorhabditis elegans and pc12 cells. Brain Res. 2010, 1332, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Qian, Y.; Meng, W.F.; Pang, J.Y.; Lin, Y.C.; Guan, Y.Y.; Chen, S.P.; Liu, J.; Pei, Z.; Wang, G.L. A novel marine compound xyloketal b protects against oxidized ldl-induced cell injury in vitro. Biochem. Pharmacol. 2009, 78, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, L.; Ling, C.; Li, J.; Pang, J.Y.; Lin, Y.C.; Liu, J.; Huang, R.; Wang, G.L.; Pei, Z.; et al. Marine compound xyloketal b protects pc12 cells against ogd-induced cell damage. Brain Res. 2009, 1302, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Chen, J.W.; Yuan, F.; Huang, Y.Y.; Zhao, L.Y.; Li, J.; Su, H.X.; Liu, J.; Pang, J.Y.; Lin, Y.C.; et al. Xyloketal b exhibits its antioxidant activity through induction of ho-1 in vascular endothelial cells and zebrafish. Mar. Drugs 2013, 11, 504–522. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.Y.; Kim, D.Y.; Kim, S.J.; Jo, H.K.; Kim, G.W.; Chung, S.H. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting srebp1 activity via the ampk–mtor–srebp signaling pathway. Biochem. Pharmacol. 2013, 85, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Tung, Y.T.; Tsai, C.L.; Lai, C.W.; Lai, Z.L.; Tsai, H.C.; Lin, Y.L.; Wang, C.H.; Chen, C.M. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice. Int. J. Obes. 2014, 38, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.N.; Jang, Y.H.; Kim, M.J.; Seo, M.J.; Kang, B.W.; Jeong, Y.K.; Kim, J.I. Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice. Nutr. Res. Pract. 2014, 8, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Soejima, Y.; Kumagai, A.; Watanabe, M.; Uozaki, H.; Fukusato, T. Japanese herbal medicines shosaikoto, inchinkoto, and juzentaihoto inhibit high-fat diet-induced nonalcoholic steatohepatitis in db/db mice. Pathol. Int. 2014, 64, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Takitani, K.; Koh, M.; Inoue, A.; Kishi, K.; Tamai, H. Retinol status and expression of retinol-related proteins in methionine-choline deficient rats. J Nutr. Sci. Vitaminol. 2014, 60, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lechon, M.J.; Donato, M.T.; Martinez-Romero, A.; Jimenez, N.; Castell, J.V.; O’Connor, J.E. A human hepatocellular in vitro model to investigate steatosis. Chem.-Biol. Interact. 2007, 165, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.; Neil, D.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Hepatic adverse effects of fructose consumption independent of overweight/obesity. Int. J. Mol. Sci. 2013, 14, 21873–21886. [Google Scholar] [CrossRef] [PubMed]
- Anania, F.A. Non-alcoholic fatty liver disease and fructose: Bad for us, better for mice. J. Hepatol. 2011, 55, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Basaranoglu, M.; Basaranoglu, G.; Sabuncu, T.; Senturk, H. Fructose as a key player in the development of fatty liver disease. World J. Gastroenterol. WJG 2013, 19, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Hur, W.; Kim, S.W.; Lee, Y.K.; Choi, J.E.; Hong, S.W.; Song, M.J.; Bae, S.H.; Park, T.; Um, S.J.; Yoon, S.K. Oleuropein reduces free fatty acid-induced lipogenesis via lowered extracellular signal-regulated kinase activation in hepatocytes. Nutr. Res. 2012, 32, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Vesterdal, L.K.; Danielsen, P.H.; Folkmann, J.K.; Jespersen, L.F.; Aguilar-Pelaez, K.; Roursgaard, M.; Loft, S.; Moller, P. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol. Appl. Pharmacol. 2014, 274, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Rybi-Szuminska, A.; Wasilewska, A.; Michaluk-Skutnik, J.; Osipiuk-Remza, B.; Filonowicz, R.; Zajac, M. Are oxidized low-density lipoprotein and c-reactive protein markers of atherosclerosis in nephrotic children? Ir. J. Med. Sci. 2014, 184, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Zurnic, I.; Djuric, T.; Koncar, I.; Stankovic, A.; Dincic, D.; Zivkovic, M. Apolipoprotein e gene polymorphisms as risk factors for carotid atherosclerosis. Vojnosanit. Pregl. Mil.-Med. Pharm. Rev. 2014, 71, 362–367. [Google Scholar] [CrossRef]
- Cheng, F.K.; Torres, D.M.; Harrison, S.A. Hepatitis c and lipid metabolism, hepatic steatosis, and nafld: Still important in the era of direct acting antiviral therapy? J. Viral Hepat. 2014, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Imajo, K.; Yoneda, M.; Nakajima, A. [pathophysiology of nash/nafld associated with high levels of serum triglycerides]. Nihon Rinsho. Jpn J. Clin. Med. 2013, 71, 1623–1629. [Google Scholar]
- Ahmed, M.H.; Byrne, C.D. Modulation of sterol regulatory element binding proteins (srebps) as potential treatments for non-alcoholic fatty liver disease (nafld). Drug Discov. Today 2007, 12, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Kohjima, M.; Higuchi, N.; Kato, M.; Kotoh, K.; Yoshimoto, T.; Fujino, T.; Yada, M.; Yada, R.; Harada, N.; Enjoji, M.; et al. Srebp-1c, regulated by the insulin and ampk signaling pathways, plays a role in nonalcoholic fatty liver disease. Int. J. Mol. Med. 2008, 21, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-H.; Hu, S.-P.; Zhang, Y.-P.; Xie, W.-N.; Li, N.; Ji, G.-Y.; Qiao, N.-L.; Lin, X.-F.; Chen, T.-Y.; Liu, H.-T. Effect of berberine on expressions of uncoupling protein-2 mrna and protein in hepatic tissue of non-alcoholic fatty liver disease in rats. Chin. J. Integr. Med. 2011, 17, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.M.; Larsen, J.Ø.; Hamilton-Dutoit, S.; Clasen, B.F.; Jessen, N.; Paulsen, S.K.; Kjær, T.N.; Richelsen, B.; Pedersen, S.B. Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet. Nutr. Res. 2012, 32, 701–708. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control | HFD+HFL | 5 mg/kg/d Xyloketal B | 10 mg/kg/d Xyloketal B | 20 mg/kg/d Xyloketal B | 15 mg/kg/d Atorvastatin |
---|---|---|---|---|---|---|
Body weight (g) | 21.84 ± 0.74 b | 31.92 ± 0.37 | 24.25 ± 0.65 b | 26.44 ± 0.94 b | 26.34 ± 0.44 b | 26.04 ± 0.80 b |
Liver/body weight (%) | 4.40 ± 0.10 b | 5.38 ± 0.12 | 3.83 ± 0.23 b | 3.65 ± 0.24 b | 3.81 ± 0.09 b | 3.80 ± 0.11 b |
Body weight/height (%) | 0.77 ± 0.02 b | 1.12 ± 0.02 | 0.85 ± 0.02 b | 0.95 ± 0.05 b | 0.94 ± 0.02 b | 0.90 ± 0.03 b |
Visceral fat (g) | 0.49 ± 0.74 b | 1.11 ± 0.37 | 0.73 ± 0.65 b | 0.69 ± 0.94 b | 0.51 ± 0.44 b | 0.35 ± 0.80 b |
Glucose (mmol/L) | 6.87 ± 0.53 a | 11.00 ± 0.57 | 7.33 ± 0.91 a | 7.64 ± 0.41 a | 7.83 ± 0.73 a | 9.98 ± 0.64 |
ALT (mmol/L) | 35.50 ± 2.11 a | 43.80 ± 2.40 | 29.25 ± 1.21 b | 30.88 ± 1.23 b | 32.38 ± 1.50 b | 35.29 ± 2.00 a |
AST (mmol/L) | 118.40 ± 3.12 a | 131.70 ± 5.79 | 110.17 ± 5.84 a | 115.00 ± 6.26 | 125.40 ± 7.26 | 110.25 ± 2.87 a |
Triglyceride (mmol/L) | 0.96 ± 0.02 a | 1.26 ± 0.10 | 0.71 ± 0.02 b | 0.73 ± 0.07 b | 0.77 ± 0.04 b | 0.78 ± 0.01 b |
Cholesterol (mmol/L) | 1.97 ± 0.06 b | 3.95 ± 0.32 | 2.22 ± 0.34 b | 2.55 ± 0.25 b | 2.53 ± 0.14 b | 1.87 ± 0.19 b |
LDL cholesterol (mmol/L) | 0.10 ± 0.01 b | 0.87 ± 0.04 | 0.55 ± 0.07 b | 0.50 ± 0.09 b | 0.37 ± 0.04 b | 0.32 ± 0.03 b |
HDL cholesterol (mmol/L) | 1.20 ± 0.03 a | 1.56 ± 0.10 | 1.36 ± 0.07 a | 1.54 ± 0.07 | 1.52 ± 0.08 | 1.65 ± 0.06 |
APOE (mmol/L) | 12.53 ± 0.55 b | 3.17 ± 0.88 | 8.53 ± 1.28 | 17.49 ± 1.05 b | 16.60 ± 1.74 b | 4.71 ± 1.13 |
Gene | Forward Primers | Reverse Primers |
---|---|---|
SREBP | CCCTGTGTACGGCCTTT | TTGCGATGTCTCCAGAGTG |
ACC1 | AAGTCCTTGGTCGGGAAGTATACA | ACTCCCTCAAAGTCATCACAAACA |
FAS | TGGTGAATTGTCTCCGAAAAGA | CACGTTCATCACGAGGTCATG |
SCD-1 | TTCTTACACGACCACCACCA | CCGAAGAGGCAGGTGTAGAG |
CD36 | TTGAAGGCATTCCCACGTATC | CGGACCCGTTGGCAAA |
PEPCK | AAGCATTCAACGCCAGGTTC | GGGCGAGTCTGTCAGTTCAAT |
CPT1A | GCACTGCAGCTCCCACATTACAA | CTCAGACAGTACCTCCTTCAGGAAA |
CPT1B | CTCCGCCTGAGCCATGAAG | CACCAGTATGATGCCATTCT |
UCP-2 | CCGCATTGGCCTCTACGACTC | GGAGCATGGTCGGGCACAGT |
GAPDH | CCTTCCGTGTTCCTACCC | CCCAAGATGCCCTTCAGT |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Meng, T.; Zuo, L.; Bei, Y.; Zhang, Q.; Su, Z.; Huang, Y.; Pang, J.; Xiang, Q.; Yang, H. Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models. Mar. Drugs 2017, 15, 163. https://doi.org/10.3390/md15060163
Zhang Y, Meng T, Zuo L, Bei Y, Zhang Q, Su Z, Huang Y, Pang J, Xiang Q, Yang H. Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models. Marine Drugs. 2017; 15(6):163. https://doi.org/10.3390/md15060163
Chicago/Turabian StyleZhang, Youying, Tian Meng, Ling Zuo, Yu Bei, Qihao Zhang, Zhijian Su, Yadong Huang, Jiyan Pang, Qi Xiang, and Hongtu Yang. 2017. "Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models" Marine Drugs 15, no. 6: 163. https://doi.org/10.3390/md15060163
APA StyleZhang, Y., Meng, T., Zuo, L., Bei, Y., Zhang, Q., Su, Z., Huang, Y., Pang, J., Xiang, Q., & Yang, H. (2017). Xyloketal B Attenuates Fatty Acid-Induced Lipid Accumulation via the SREBP-1c Pathway in NAFLD Models. Marine Drugs, 15(6), 163. https://doi.org/10.3390/md15060163