Marine-Derived Peptides with Anti-Hypertensive Properties: Prospects for Pharmaceuticals, Supplements, and Functional Food
Abstract
:1. Introduction
1.1. Biochemical Studies
1.2. Cell Studies
1.3. In Silico
1.4. Animal Studies
1.5. Clinical Trials
2. Materials and Methods
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Heart Views 2017, 18, 109–114. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 31 October 2023).
- Albasri, A.; Hattle, M.; Koshiaris, C.; Dunnigan, A.; Paxton, B.; Fox, S.E.; Smith, M.; Archer, L.; Levis, B.; Payne, R.A.; et al. Association between antihypertensive treatment and adverse events: Systematic review and meta-analysis. BMJ 2021, 372, n189. [Google Scholar] [CrossRef] [PubMed]
- Gebreyohannes, E.A.; Bhagavathula, A.S.; Abebe, T.B.; Tefera, Y.G.; Abegaz, T.M. Adverse effects and non-adherence to antihypertensive medications in University of Gondar Comprehensive Specialized Hospital. Clin. Hypertens. 2019, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yano, Y.; Cho, S.M.J.; Heo, J.E.; Kim, D.-W.; Park, S.; Lloyd-Jones, D.M.; Kim, H.C. Adherence to Antihypertensive Medication and Incident Cardiovascular Events in Young Adults with Hypertension. Hypertension 2021, 77, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Isath, A.; Hahn, J.; Wang, Z.; Narasimhan, B.; Kaplin, S.L.; Jneid, H.; Virani, S.S.; Tang, W.H.W. Fish Consumption and Cardiovascular Health: A Systematic Review. Am. J. Med. 2021, 134, 713–720. [Google Scholar] [CrossRef]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.L.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Nutrition: Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef]
- Rosenberg, G. A New Critical Estimate of Named Species-Level Diversity of the Recent Mollusca. Am. Malacol. Bull. 2014, 32, 308–322. [Google Scholar] [CrossRef]
- Haszprunar, G.; Wanninger, A. Molluscs. Curr. Biol. 2012, 22, R510–R514. [Google Scholar] [CrossRef] [PubMed]
- Varijakzhan, D.; Loh, J.-Y.; Yap, W.-S.; Yusoff, K.; Seboussi, R.; Lim, S.-H.E.; Lai, K.-S.; Chong, C.-M. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar. Drugs 2021, 19, 246. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, C.T.; Miyake, T.; Rast, J.P. Echinoderms. Curr. Biol. 2005, 15, R944–R946. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyniak, M.K.; Matas Serrato, L.A.; Blanchoud, S. Artificial seawater based long-term culture of colonial ascidians. Dev. Biol. 2021, 480, 91–104. [Google Scholar] [CrossRef]
- Hardoim, C.C.; Costa, R.; Araújo, F.V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A.S.; van Elsas, J.D. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl. Environ. Microbiol. 2009, 75, 3331–3343. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.W.F.S.; Cunha, N.B.d.; Carneiro, J.A.; Costa, R.A.d.; Alencar, S.A.d.; Cardoso, M.H.; Franco, O.L.; Dias, S.C. Marine Organisms as a Rich Source of Biologically Active Peptides. Front. Mar. Sci. 2021, 8, 667764. [Google Scholar] [CrossRef]
- Ye, H.; Tao, X.; Zhang, W.; Chen, Y.; Yu, Q.; Xie, J. Food-derived bioactive peptides: Production, biological activities, opportunities and challenges. J. Future Foods 2022, 2, 294–306. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front. Nutr. 2021, 8, 815640. [Google Scholar] [CrossRef]
- Ahmed, T.; Sun, X.; Udenigwe, C.C. Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci. Technol. 2022, 120, 265–273. [Google Scholar] [CrossRef]
- Ramakrishnan, S.R.; Jeong, C.R.; Park, J.W.; Cho, S.S.; Kim, S.J. A review on the processing of functional proteins or peptides derived from fish by-products and their industrial applications. Heliyon 2023, 9, e14188. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Patten, G.S.; Abeywardena, M.Y.; Bennett, L.E. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit. Rev. Food Sci. Nutr. 2016, 56, 181–214. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Yanuar, A.; Mulia, K.; Mun’im, A. Review of Angiotensin-converting Enzyme Inhibitory Assay: Rapid Method in Drug Discovery of Herbal Plants. Pharmacogn. Rev. 2017, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ben Henda, Y.; Labidi, A.; Arnaudin, I.; Bridiau, N.; Delatouche, R.; Maugard, T.; Piot, J.M.; Sannier, F.; Thiéry, V.; Bordenave-Juchereau, S. Measuring angiotensin-I converting enzyme inhibitory activity by micro plate assays: Comparison using marine cryptides and tentative threshold determinations with captopril and losartan. J. Agric. Food Chem. 2013, 61, 10685–10690. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.A.; de Castro, R.; Coscueta, E.R.; Pintado, M. Hydrolysate from Mussel Mytilus galloprovincialis Meat: Enzymatic Hydrolysis, Optimization and Bioactive Properties. Molecules 2021, 26, 5228. [Google Scholar] [CrossRef]
- Neves, A.; Harnedy, P.; FitzGerald, R.; Neves, A.C.; Harnedy, P.A.; FitzGerald, R.J. Angiotensin Converting Enzyme and Dipeptidyl Peptidase-IV Inhibitory, and Antioxidant Activities of a Blue Mussel (Mytilus edulis) Meat Protein Extract and Its Hydrolysates. J. Aquat. Food Prod. Technol. 2016, 25, 1221–1233. [Google Scholar] [CrossRef]
- CunhaNeves, A.; Harnedy-Rothwell, P.; FitzGerald, R.; CunhaNeves, A.; Harnedy-Rothwell, P.A.; FitzGerald, R.J. In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. Eur. Food Res. Technol. 2022, 248, 1721–1732. [Google Scholar] [CrossRef]
- Sasaki, C.; Tamura, S.; Tohse, R.; Fujita, S.; Kikuchi, M.; Asada, C.; Nakamura, Y. Isolation and identification of an angiotensin I-converting enzyme inhibitory peptide from pearl oyster (Pinctada fucata) shell protein hydrolysate. Process Biochem. 2019, 77, 137–142. [Google Scholar] [CrossRef]
- Li, J.; Su, J.; Chen, M.; Chen, J.; Ding, W.; Li, Y.; Yin, H. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: Identification, screening and inhibitory mechanisms. RSC Adv. 2021, 11, 12172–12182. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Z.; Luo, L.; Zhu, J.; Huang, F.; Yang, Z.; Tang, Y.; Ding, G. Identification and Molecular Docking Study of a Novel Angiotensin-I Converting Enzyme Inhibitory Peptide Derived from Enzymatic Hydrolysates of Cyclina sinensis. Mar. Drugs 2018, 16, 411. [Google Scholar] [CrossRef]
- Paul, A.; Eghianruwa, Q.; Oparinde, O.; Adesina, A.; Osoniyi, O. Enzymatic protein hydrolysates, and ultrafiltered peptide fractions from two molluscs: Tympanotonus fuscatus var. radula (L.) and Pachymelania aurita (M.), with angiotensin-I-converting enzyme inhibitory and DPPH radical scavenging activities. Int. J. Appl. Basic Med. Res. 2021, 11, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Lu, D.; Han, J.; Lu, X.; Tian, Z.; Wang, Z. Angiotensin Converting Enzyme Inhibitory, Antioxidant Activities, and Antihyperlipidaemic Activities of Protein Hydrolysates From Scallop Mantle (Chlamys farreri). Int. J. Food Prop. 2015, 18, 33–42. [Google Scholar] [CrossRef]
- Chun, B.-S.; Lee, S.-C.; Ho, T.-C.; Micomyiza, J.-B.; Park, J.-S.; Nkurunziza, D.; Lee, H.-J. Subcritical Water Hydrolysis of Comb Pen Shell (Atrina pectinata) Edible Parts to Produce High-Value Amino Acid Products. Mar. Drugs 2022, 20, 357. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Roy, V.C.; Ho, T.C.; Park, J.-S.; Jeong, Y.-R.; Lee, S.-C.; Kim, S.-Y.; Chun, B.-S. Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell (Atrina pectinata) Viscera Using Subcritical Water Hydrolysis. Mar. Drugs 2021, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Jang, J.; Ye, B.; Kim, M.; Choi, I.; Park, W.; Heo, S.; Jung, W. Purification and molecular docking study of angiotensin I-converting enzyme (ACE) inhibitory peptides from hydrolysates of marine sponge Stylotella aurantium. Process Biochem. 2017, 54, 180–187. [Google Scholar] [CrossRef]
- Ghanbari, R.; Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Ismail, A.; Saari, N. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates. Int. J. Mol. Sci. 2015, 16, 28870–28885. [Google Scholar] [CrossRef] [PubMed]
- Dewi, A.; Patantis, G.; Fawzya, Y.; Irianto, H.; Sa’diah, S. Angiotensin-Converting Enzyme (ACE) Inhibitory Activities of Protein Hydrolysates from Indonesian Sea Cucumbers. Int. J. Pept. Res. Ther. 2020, 26, 2485–2493. [Google Scholar] [CrossRef]
- Quaisie, J.; Ma, H.; Guo, Y.; Tuly, J.A.; Igbokwe, C.J.; Ekumah, J.-N.; Akpabli-Tsigbe, N.D.K.; Yanhua, D.; Liu, D. Highly stable, antihypertensive, and antioxidative peptide production from Apostichopus japonicus by integrated enzymatic membrane reactor and nanofilter-purification mechanism. Food Funct. 2022, 13, 2306–2322. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Zhao, Y.; Zhu, X.; Yu, R.; Dong, S.; Wu, H.; Li, J.; Liu, Z.; Zhao, Y.; et al. Novel Natural Angiotensin Converting Enzyme (ACE)-Inhibitory Peptides Derived from Sea Cucumber-Modified Hydrolysates by Adding Exogenous Proline and a Study of Their Structure-Activity Relationship. Mar. Drugs 2018, 16, 271. [Google Scholar] [CrossRef]
- So, P.B.; Rubio, P.; Lirio, S.; Macabeo, A.P.; Huang, H.Y.; Corpuz, M.J.; Villaflores, O.B. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate. Toxicon 2016, 119, 77–83. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Shi, Y.; Qiao, R.; Tang, W.; Sun, Z. Production of the angiotensin I converting enzyme inhibitory peptides and isolation of four novel peptides from jellyfish (Rhopilema esculentum) protein hydrolysate. J. Sci. Food Agric. 2016, 96, 3240–3248. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Sun, L.; Li, B. Production of the Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptide from Hydrolysates of Jellyfish (Rhopilema esculentum) Collagen. Food Bioprocess. Technol. 2012, 5, 1622–1629. [Google Scholar] [CrossRef]
- Ko, S.; Kang, M.; Lee, J.; Byun, H.; Kim, S.; Lee, S.; Jeon, B.; Park, P.; Jung, W.; Jeon, Y. Effect of angiotensin I-converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of Styela plicata. Eur. Food Res. Technol. 2011, 233, 915–922. [Google Scholar] [CrossRef]
- Ko, S.-C.; Lee, J.-K.; Byun, H.-G.; Lee, S.-C.; Jeon, Y.-J. Purification and characterization of angiotensin I-converting enzyme inhibitory peptide from enzymatic hydrolysates of Styela clava flesh tissue. Process Biochem. 2012, 47, 34–40. [Google Scholar] [CrossRef]
- Rivas-Vela, C.I.; Amaya-Llano, S.L.; Castaño-Tostado, E.; Castillo-Herrera, G.A. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules 2021, 26, 6655. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Toldrá, F. Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr. Opin. Food Sci. 2023, 49, 100973. [Google Scholar] [CrossRef]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sun, L.; Zhang, Y.; Liu, G. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar. Drugs 2012, 10, 417–426. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Domínguez-Pérez, M.; Mercado, I.; Villarreal-Molina, M.T.; Jacobo-Albavera, L. Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. Appl. Sci. 2020, 10, 938. [Google Scholar] [CrossRef]
- Griendling, K.K.; Camargo, L.L.; Rios, F.J.; Alves-Lopes, R.; Montezano, A.C.; Touyz, R.M. Oxidative Stress and Hypertension. Circ. Res. 2021, 128, 993–1020. [Google Scholar] [CrossRef]
- Suo, S.K.; Zhao, Y.Q.; Wang, Y.M.; Pan, X.Y.; Chi, C.F.; Wang, B. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis: Isolation, identification, molecular docking study, and protective function on HUVECs. Food Funct. 2022, 13, 7831–7846. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, C.; Liu, X.; Qiao, B.; Song, S.; Fu, Y. ACE inhibitory activities of two peptides derived from Volutharpa ampullacea perryi hydrolysate and their protective effects on H2O2 induced HUVECs injury. Int. Food Res. 2022, 157, 111402. [Google Scholar] [CrossRef] [PubMed]
- Carrera, M.; Ezquerra-Brauer, J.M.; Aubourg, S.P. Characterization of the Jumbo Squid (Dosidicus gigas) Skin By-Product by Shotgun Proteomics and Protein-Based Bioinformatics. Mar. Drugs 2019, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, C.; Song, Y.; Zhu, J.; Zhang, X. Discovery of Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Todarodes pacificus and Their Inhibitory Mechanism: In Silico and In Vitro Studies. Int. J. Mol. Sci. 2019, 20, 4159. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Mendez, R.L.; Kwon, J.Y. In Silico Prospecting for Novel Bioactive Peptides from Seafoods: A Case Study on Pacific Oyster (Crassostrea gigas). Molecules 2023, 28, 651. [Google Scholar] [CrossRef] [PubMed]
- Kamble, A.; Srinivasan, S.; Singh, H. In-Silico Bioprospecting: Finding Better Enzymes. Mol. Biotechnol. 2019, 61, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.E.; Turner, R.J. A pharmacological study of the toxin in a Cnidarian, Chironex fleckeri Southcott. Br. J. Pharmacol. 1969, 35, 510–520. [Google Scholar] [CrossRef]
- Freeman, S.E.; Turner, R.J. Cardiovascular effects of toxins isolated from the cnidarian Chironex fleckeri Southcott. Br. J. Pharmacol. 1971, 41, 154–166. [Google Scholar] [CrossRef]
- Freeman, S.E.; Turner, R.J. Cardiovascular effects of cnidarian toxins: A comparison of toxins extracted from Chiropsalmus quadrigatus and Chironex fleckeri. Toxicon 1972, 10, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Je, J.-Y.; Park, P.-J.; Byun, H.-G.; Jung, W.-K.; Kim, S.-K. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresour. Technol. 2005, 96, 1624–1629. [Google Scholar] [CrossRef]
- Feng, J.; Dai, Z.; Zhang, Y.; Meng, L.; Ye, J.; Ma, X.; Feng, J.; Dai, Z.; Zhang, Y.; Meng, L.; et al. Alteration of Gene Expression Profile in Kidney of Spontaneously Hypertensive Rats Treated with Protein Hydrolysate of Blue Mussel (Mytilus edulis) by DNA Microarray Analysis. PLoS ONE 2015, 10, e0142016. [Google Scholar] [CrossRef] [PubMed]
- Yamanushi, M.; Shimura, M.; Nagai, H.; Hamada-Sato, N.; Yamanushi, M.; Shimura, M.; Nagai, H.; Hamada-Sato, N. Antihypertensive effects of abalone viscera fermented with Lactiplantibacillus pentosus SN001 via angiotensin-converting enzyme inhibition. Food Chem. 2022, 13, 100239. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, X.; Wei, Y.; Liu, Q.; Jiang, Y.; Zhao, L.; Ulaah, S. Isolation, purification and the anti-hypertensive effect of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from Ruditapes philippinarum fermented with Bacillus natto. Food Funct. 2018, 9, 5230–5237. [Google Scholar] [CrossRef]
- Song, Y.H.; Yu, J.; Song, J.L.; Wang, S.L.; Cao, T.F.; Liu, Z.M.; Gao, X.; Wei, Y.X. The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats. J. Funct. Foods 2021, 79, 104411. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Zhao, L.; Yu, J.; Wang, S.; Cao, T.; Gao, X.; Wei, Y. Identification and Antihypertension Study of Novel Angiotensin I-Converting Enzyme Inhibitory Peptides from the Skirt of Chlamys farreri Fermented with Bacillus natto. J. Agric. Food Chem. 2021, 69, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nishizono, S.; Kugino, K.; Tamari, M.; Kurumiya, M.; Abe, N.; Ikeda, I. Effects of Dietary Oyster Extract on Lipid Metabolism, Blood Pressure, and Blood Glucose in SD Rats, Hypertensive Rats, and Diabetic Rats. Biosci. Biotechnol. Biochem. 2006, 70, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Shiozaki, K.; Shiozaki, M.; Masuda, J.; Yamauchi, A.; Ohwada, S.; Nakano, T.; Yamaguchi, T.; Saito, T.; Muramoto, K.; Sato, M. Identification of oyster-derived hypotensive peptide acting as angiotensin-I-converting enzyme inhibitor. Fish. Sci. 2010, 76, 865–872. [Google Scholar] [CrossRef]
- Xie, C.; Kim, J.; Ha, J.; Choung, S.; Choi, Y.; Xie, C.-L.; Kim, J.-S.; Ha, J.-M.; Choung, S.-Y.; Choi, Y.-J. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein. Biomed. Res. Int. 2014, 2014, 379234. [Google Scholar] [CrossRef]
- Liu, P.; Lan, X.; Yaseen, M.; Wu, S.; Feng, X.; Zhou, L.; Sun, J.; Liao, A.; Liao, D.; Sun, L. Purification, Characterization and Evaluation of Inhibitory Mechanism of ACE Inhibitory Peptides from Pearl Oyster (Pinctada fucata martensii) Meat Protein Hydrolysate. Mar. Drugs 2019, 17, 463. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Dong, S.; Liu, Z.; Zhao, X.; Wang, J.; Zeng, M. A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides 2009, 30, 1028–1033. [Google Scholar] [CrossRef]
- Sadegh Vishkaei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Ismail, A.; Saari, N. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats. Mar. Drugs 2016, 14, 176. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Zhang, C.; Liu, C. Angiotensin converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates from Rhopilema esculentum. Food Chem. 2012, 134, 2134–2140. [Google Scholar] [CrossRef]
- Ko, S.C.; Kim, D.G.; Han, C.H.; Lee, Y.J.; Lee, J.K.; Byun, H.G.; Lee, S.C.; Park, S.J.; Lee, D.H.; Jeon, Y.J. Nitric oxide-mediated vasorelaxation effects of anti-angiotensin I-converting enzyme (ACE) peptide from Styela clava flesh tissue and its anti-hypertensive effect in spontaneously hypertensive rats. Food Chem. 2012, 134, 1141–1145. [Google Scholar] [CrossRef]
- Kang, N.; Ko, S.C.; Kim, H.S.; Yang, H.W.; Ahn, G.; Lee, S.C.; Lee, T.G.; Lee, J.S.; Jeon, Y.J. Structural Evidence for Antihypertensive Effect of an Antioxidant Peptide Purified from the Edible Marine Animal Styela clava. J. Med. Food 2020, 23, 132–138. [Google Scholar] [CrossRef]
- Ko, S.; Jung, W.; Lee, S.; Lee, D.; Jeon, Y.; Ko, S.-C.; Jung, W.-K.; Lee, S.-H.; Lee, D.H.; Jeon, Y.-J. Antihypertensive effect of an enzymatic hydrolysate from Styela clava flesh tissue in type 2 diabetic patients with hypertension. Nutr. Res. Pract. 2017, 11, 396–401. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
Common Name | Scientific Name | Tissue | Method | Control | IC50-Values or % ACE Inhibition | Peptide Sequence | Reference |
---|---|---|---|---|---|---|---|
Mollusca | |||||||
Mediterranean mussel | Mytilus galloprovincialis | Meat | EH with subtilisin and corolase | - | 3.7 ± 0.22 and 1.0 ± 0.56 mg/mL | - | [27] |
Blue mussel | Mytilus edulis | Meat from co-products * | EH with Alcalase®, Alcalase® + flavourzyme, corolase PP or Promod 144 MG | Unhydrolyzed protein | 1.13–3.34 mg/mL | - | [28] |
Blue mussel | Mytilus edulis | Byssus | EH with Alcalase®, Alcalase® + flavourzyme, corolase PP, Promod 144 MG or An-PEP | Unhydrolyzed protein | 0.77–1.37 mg/mL | - | [29] |
Akoya Pearl oyster | Pinctada fucata | Shell | EH with orientase 22 BF | - | 5.82 ± 0.56 μg/mL | GVGSPY | [30] |
Akoya pearl oyster | Pinctada fucata | Meat | EH with Alcalase® | - | 18.34 and 116.26 μM | FRVW and LPYY | [31] |
Chinese Venus | Cyclina sinensis | Meat | EH with trypsin | - | 0.789 mM | WPMGF | [32] |
West African mud creeper and Nigerian periwinkles | Tympanotonus fuscatus var. radula and Pachymelania aurita | Meat and hemolymph | Simulated GI digestion model with pepsin, trypsin, and chymotrypsin | Captopril | 54.93 ± 2.83, 291.7 ± 8.6, 65.2 ± 6.4, and 301.9 ± 59.1 μg/mL | - | [33] |
Scallop | Chlamys Farreri | Mantle | EH with neutral protease and trypsin | - | 10.28 mg/mL | - | [34] |
Comb Pen Shell | Atrina pectinate | Edible parts | SCWH | Captopril 1% | 85.85 ± 0.67, 84.55 ± 0.18, and 82.15 ± 0.85% | - | [35] |
Comb Pen Shell | Atrina pectinate | Viscera | SCWH | Captopril 0.1% | 96.77 ± 0.14–92.16 ± 0.04% | - | [36] |
Porifera | |||||||
Sponge | Stylotella aurantium | Whole body | EH with pepsin | - | 273.2 and 306.4 μM | YR and IR | [37] |
Echinodermata | |||||||
Stonefish | Actinopyga lecanora | Gutted whole body | EH with Alcalase®, bromelain, trypsin, papain, pepsin or flavourzyme | Captopril | 1.50, 1.73, 2.04, 2.18, 2.31, and 2.54 mg/mL | - | [38] |
Indonesian sea cucumbers | Holothuria atra, Holothuria leucospilota, and Bohadschia marmorata | Gutted whole body | EH with Alcalase® or bromelain | - | 0.32–0.58 mg/mL and 0.64–0.79 mg/mL | - | [39] |
Sea cucumber | Argyrosomus japonicus | Whole body | EH with Alcalase® | - | 58.87–80.38% | - | [40] |
Sea cucumber | Acaudina molpadioidea | Body wall | EH with trypsin, and papain | Captopril | 8.18 and 13.16 μM | PNVA and PNLG | [41] |
Cnidaria | |||||||
Box Jellyfish | Chiropsalmus quadrigatus | Venom | EH with pepsin and papain | - | 2.03 μM | ACPGPNPGRP | [42] |
Flame Jellyfish | Rhopilema esculentum | Whole body | Compound proteinase AQ hydrolysis | EH with other enzymes | 8.4, 23.42, 21.15, and 19.11 μmol/L | VGPY, FTYVPG, FTYVPGA, and FQAVWAG | [43] |
Flame Jellyfish | Rhopilema esculentum | Collagen | EH with Alcalase® | - | 43 μg/mL | - | [44] |
Chordata | |||||||
Solitary tunicate | Styela plicata | Tissue | EH with Protamex | EH with other enzymes | 24.7 μM | MLLCS | [45] |
Club tunicate | Styela clava | Flesh tissue | EH with Protamex | EH with other enzymes | 37.1 μM | AHIII | [46] |
Common Name | Scientific Name | Tissue | Method | Control or Databased Used | IC50-Values or % ACE Inhibition | Peptide Sequence | Reference |
---|---|---|---|---|---|---|---|
Mollusca | |||||||
Blue mussel | Mytilus edulis | Proteins | Cell model HUVECs | Captopril and norepinephrine | 0.77 ± 0.020, 0.19 ± 0.010, and 0.32 ± 0.017 mg/mL | IK, YEGDP, and SWISS | [53] |
Deep sea snail | Volutharpa ampullacea perryi | Edible parts | Cell model HUVECs | Bradykinin enhancer B, octapeptide angiotensin II, and lisinopril | 76.34 ± 0.79 and approximately 40% | IVTNWDDMEK and VGPAGPRG | [54] |
Jumbo squid | Dosidicus giga | Skin | In silico with pepsin and trypsin | PeptideRanker | - | - | [55] |
Japanese flying squid | Todarodes pacificus | Myosin heavy chain | In silico and in vitro with papain, ficin, and in combination | BIOPEP-UWM and AHTpin | pIC50 = 4.58 and 4.41 | IIY and NPPK | [56] |
Pacific oyster | Crassostrea gigas | Large proteins | In silico with pepsin, trypsin, and chemo-trypsin | AHTpDB | - | - | [57] |
Common Name | Scientific Name | Tissue | Method | Control | IC50-Values or ACE Inhibition % | Peptide Sequence | Animal Model | Dosage | Duration | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Mollusca | ||||||||||
Blue mussel | Mytilus edulis | Muscle | Fermentation 6 months | Captopril and saline solution | 19.34 μg/mL | EVMAGNLYPG | SHR | 10 mg/kg bw, oral injection * | 9 h | [62] |
Blue mussel | Mytilus edulis | Muscle | EH with Alcalase® | Water | VW, LGW, and MVWT | SHR | 10 or 20 mg/kg/day hydrolysate, daily oral injection | 28 days | [63] | |
Abalone | Haliotidae rubra | Viscera | Fermentation with Lactiplantibacillus pentosus SN001 | Standard diet | 80% | - | SHRs | 5% hydrolysate in the diet, ad libitum | 9 weeks | [64] |
Japanese littleneck clam | Ruditapes phillippinarum | Meat | Fermentation with Bacillus natto | Undisclosed model group | 8.16 μM | VISDEDGVTH | SD rats | 8 mg/ kg bw and 32 mg/kg bw peptide, oral gavage * | 6 days | [65] |
Japanese littleneck clam | Ruditapes phillippinarum | Meat | Fermentation with Bacillus natto | 10 mg/ kg bw saline and captopril | - | - | SHRs | 100 mg/ kg bw peptide, daily oral gavage | 8 weeks | [66] |
Scallop | Chlamys farreri | Skirt | Fermentation with Bacillus natto | 1 mL/kg solution and 10 mg/kg captopril | 0.12 ± 0.01 mg/mL | AGFAGDDAPR, CDVDIR, IIAPPER, IWHHTFYNGLR and GIQTAVR | SHRs | 25, 50, or 100 mg/kg fraction in the diet, ad libitum | 24 h and 8 weeks | [67] |
Oyster | - | Meat | EH with aloase and pancitase | Control diet without hydrolysate | - | - | SHRs | 5% oyster extracts in the diet, ad libitum | 4 weeks | [68] |
Oyster | Crassostrea gigas | Whole body and striate muscle | EH with trypsin | Control diet without hydrolysate | 143 and 28 nmol/mL | DLTDY and DY | SHRs | 50, 100, and 1000 mg/kg day, single oral injection and in the diet, ad libitum | 6 h, 24 h, and 9 weeks | [69] |
Oyster | - | Cross-linked protein | EH | Untreated SHRs, Sardine hydrolysate and captopril | 16.7, 29.0, 51.5, 68.2, and 93.9 μM | TAY, VK, KY, FYN, and YA | SHRs | Hydrolysate, single oral gavage | 24 h | [70] |
Pearl oyster | Pinctada fucata martensii | Meat | EH with alkaline protease | 10 mg/kg captopril and saline solution | 458 ± 3.24 and 109 ± 1.45 μM | HLHT and GWA | SD rats | 10 mg/kg bw hydrolysate, single intravenous administration | 45 min | [71] |
Echinodermata | ||||||||||
Sea cucumber | Acaudina molpadioidea | Body wall protein | EH with bromelain and Alcalase® | 3 μM/kg captopril and saline solution | 15.9 and 4.5 μM | MEGAQEAQGD | SHRs | 3 μM/kg, one-shot oral injection | 6 h | [72] |
Sea cucumber | Actinopyga lecanora | Muscle | EH with bromelain | 50 mg/kg captopril, water, and saline solution | - | - | SD rats | 200, 400, and 800 mg/kg bw, single oral gavage | 3 h | [73] |
Cnidaria | ||||||||||
Flame jellyfish | Rhopilema esculentum | Flesh | Two-step EH with pepsin and papain | 50 mg/kg captopril and distilled water | 1.28 mg/mL | - | SHRs | 200, 400, and 800 mg/kg hydrolysate, single oral gavage, and daily oral gavage | 8 h and 5-weeks | [74] |
Flame jellyfish | Rhopilema esculentum | Collagen | EH with Alcalase® | Captopril and control diet | 43 μg/mL | - | Wistar strain rats | 25 and 100 mg/kg bw, daily oral gavage | 4 weeks | [50] |
Chordata | ||||||||||
Club tunicate | Styela clava | Flesh | EH with Protamex | 30 mg/kg bw amlodipine and saline solution | - | AHIII | SHRs and SD rats | 100 mg/kg bw peptide, single oral gavage | 24 h | [75] |
Club tunicate | Styela clava | Flesh | Synthesized | Captopril and saline solution | 16.4 ± 0.45 μM | LWHTH | SHRs | 40 mg/kg bw peptide, single oral injection | 9 h | [76] |
Club tunicate | Styela clava | Flesh | Randomized placebo-controlled double-blind study | Not disclosed | - | - | Human | 500 mg/day, capsule | 4 weeks | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walquist, M.J.; Eilertsen, K.-E.; Elvevoll, E.O.; Jensen, I.-J. Marine-Derived Peptides with Anti-Hypertensive Properties: Prospects for Pharmaceuticals, Supplements, and Functional Food. Mar. Drugs 2024, 22, 140. https://doi.org/10.3390/md22040140
Walquist MJ, Eilertsen K-E, Elvevoll EO, Jensen I-J. Marine-Derived Peptides with Anti-Hypertensive Properties: Prospects for Pharmaceuticals, Supplements, and Functional Food. Marine Drugs. 2024; 22(4):140. https://doi.org/10.3390/md22040140
Chicago/Turabian StyleWalquist, Mari Johannessen, Karl-Erik Eilertsen, Edel Oddny Elvevoll, and Ida-Johanne Jensen. 2024. "Marine-Derived Peptides with Anti-Hypertensive Properties: Prospects for Pharmaceuticals, Supplements, and Functional Food" Marine Drugs 22, no. 4: 140. https://doi.org/10.3390/md22040140