Neurotoxic Shellfish Poisoning
Abstract
:1. Introduction
2. Geographical Areas
3. Sources of Human Exposure to Brevetoxins
4. Biological Mechanism of Brevetoxins
5. Diagnosis and Treatment
6. Analysis of Brevetoxins
7. Epidemiology of NSP
7.1 Brevetoxin-associated Respiratory Effects
7.2 Marine Animal Brevetoxin-associated Illness
8. NSP: Current Regulations and Public Health Prevention
9. Recommendations
- Environmental Research:
- Identify additional species of HABs which produce brevetoxins.
- Determine additional species of molluscs that accumulate brevetoxins (and that are a potential food source) and their depuration rates.
- Identify species of finfish that accumulate brevetoxins (and are a potential food source) and the distribution of the toxin within fish organs and tissues.
- Review regional monitoring and analyses practices for mollluscs and finfish to determine the adequacy of current guidelines and protocols for protection of public health.
- Evaluation of ELISA brevetoxin method as potential replacement of the mouse bioassay.
- Surveillance:
- Increase and improve public health disease surveillance of NSP and other marine toxins for better estimates of disease incidence.
- Provide timely alerts to public health epidemiologists during an outbreak to improve detection of NSP-associated illness.
- Increase number of states that designate illnesses related to marine toxins (NSP, Ciguatera, etc.) as reportable diseases to improve surveillance; obtain better estimates of national incidence of HAB-related illness and to develop appropriate prevention strategies.
- Outreach and Education Information
- Improve dissemination of information on shellfish harvesting beds and regulations including harvesting openings and closings.
- Develop easily available user friendly web sites and related materials for the general public including transient populations such as tourists and part time residents.
- Produce targeted educational campaign on signs, symptoms and diagnosis of NSP for first responders, emergency department physicians, and other healthcare providers, particularly in high-risk areas.
- Develop targeted education on the signs, symptoms and diagnosis of NSP for first responders, emergency department physicians, and other healthcare providers, particularly for high-risk areas.
- Ensure education and outreach activities have components tailored to reach transient populations including non-English speaking visitors in high-risk areas.
- Human Toxicology and Epidemiology
- Improve understanding of brevetoxins (and metabolites) toxicity, with including minimal doses for adverse effects, dose response curves, with emphasis on human exposures.
- Evaluate efficacy of mannitol or brevenal for treatment of NSP.
- Follow confirmed NSP cases over a longer period of time to determine whether there are long term adverse effects or chronic sequela to exposures.
Acknowledgements
References
- Duagbjerg, N; Hansen, G; Larsen, J; Moestrup, O. Phylogeny of Some of the Major Genera of Dinoflagellates Based on Ultrastructure and Partial LSU rDNA Sequence Data, Including the Erection of Three New Genera of Unarmored Dinoflagellates. Phycologia 2001, 39, 302–317. [Google Scholar]
- Steidinger, KA; Baden, DG. Spector, DL, Ed.; Toxic marine dinoflagellates. In Dinoflagellates; Academic Press: New York, USA, 1984; pp. 201–299. [Google Scholar]
- Kusek, KM; Vargo, G; Steidinger, K. Gymnodinium Breve in the Field, in the Lab and in the Newspaper-A Scientific and Journalistic Analysis of Florida Red Tides. Contr Mar Sci 1999, 34, 1–229. [Google Scholar]
- Landsberg, JH. The Effects of Harmful Algal Blooms on Aquatic Organisms. Rev Fish Sci 2002, 10, 113–390. [Google Scholar]
- Flewelling, LJ; Naar, JP; Abbott, JP; Baden, DG; Barros, NB; Bossart, GD; Bottein, MY; Hammond, DG; Haubold, EM; Heil, CA; Henry, MS; Jacocks, HM; Leighfield, TA; Pierce, RH; Pitchford, TD; Rommel, SA; Scott, PS; Steidinger, KA; Truby, EW; van Dolah, FM; Landsberg, JH. Red Tides and Marine Mammal Mortalities. Nature 2005, 435, 755–756. [Google Scholar]
- Trainer, VL; Baden, DG. High Affinity Binding of Red Tide Neurotoxins to Marine Mammal Brain. Aquatic Toxins 1999, 46, 139–148. [Google Scholar]
- Kreuder, C; Bossart, GD; Elle, M. Clinicopathologic features of an epizootic in the double-crested cormorant (phalacrocorax auritus) along the florida gulf coast. Proceedings of the Wildlife Disease Association, Madison WI., USA, 1998.
- Steidinger, KA; Burklew, MA; Ingle, RM. Martin, DF, Padilla, GM, Eds.; The effects of Gymnodinium breve toxin on estuarine animals. In Marine Pharmacognosy; Academic Press: New York, USA, 1973; pp. 179–202. [Google Scholar]
- Bourdelais, AJ; Tomas, CR; Naar, J; Kubanek, J; Baden, DG. New Fish Killing Alga in Coastal Delaware Produces Neurotoxins. Env Health Perspect 2002, 110, 465–470. [Google Scholar]
- Walker, ST. Fish Mortality in the Gulf of Mexico. Proc US Nat Mus 1884, 6, 105–109. [Google Scholar]
- Florida Fish and Wildlife Conservation Commission. Red Tides in Florida: Harmful Algal Bloom Historical Database, Version 2.0; 1954–2002 (CD-ROM), St. Petersburg, Florida, 2001.
- Heil, CA; Reich, A. Recreational Water and Harmful Algal Blooms in Florida. Conference on Promoting Public Health Through Safe Water, Orlando, FL, USA, January 2005.
- Brand, LE; Compton, A. Long Term Increase in Karenia brevis Abundance Along the Southwest Florida Coast. Harmful Algae 2007, 6, 232–252. [Google Scholar]
- Stumpf, RP; Litaker, RW; Lanerolle, L; Tester, PA. Hydrodynamic Accumulation of Karenia off the West Coast of Florida. Continental Self Research 2008, 28, 189–213. [Google Scholar]
- Walsh, JJ; Joliff, JK; Darrow, BP; et al. Red Tides in the Gulf of Mexico: Where, When and Why? J Geophys Res 2007, 111, 1003. [Google Scholar]
- Olascoaga, MJ; Rypina, II; Brown, MG; Beron-Vera, FJ; Kocak, H; Brand, LE; Halliwell, GR; Shay, LK. Persistent Transport Barrier on the West Florida Shelf. Geophys Res Letters 2006, 33, L22603. [Google Scholar]
- Tester, PA; Stumpf, RP; Vukovich, FM; Fowler, PK; Turner, JT. An Expatriate Red Tide Bloom: Transport, Distribution and Persistence. Limnol Oceanogr 1991, 36, 1053–1061. [Google Scholar]
- Tester, PA; Steidinger, KA. Gymnodinium Breve Red Tide Blooms: Inititation, Transport, and Consequences of Surface Circulation. Limnol Oceanogr 1997, 42, 1039–1051. [Google Scholar]
- Anderson, DM. Red Tides. Sci Am 1994, 271, 62–68. [Google Scholar]
- Steidinger, KA; Ingle, RM. Observations on the 1971 Summer Red Tide in Tampa Bay. Env Lett 1972, 3, 271–278. [Google Scholar]
- Kin-Chung, H; Hodgkiss, IJ. Red Tides in Subtropical Waters: An Overview of Their Occurrence. Asian Marine Biol 1991, 8, 5–23. [Google Scholar]
- Smayda, TJ; White, AW. Granelli, E, Ed.; Has There Been a Global Expansion of Algal Blooms? If so is There a Connection with Human Activities? In Toxic Marine Phytoplankton; Elsevier: New York, USA, 1990; pp. 516–517. [Google Scholar]
- Walsh, JJ; Steidinger, KA. Saharan Dust and Florida Red Tides: The Cyanophyte Connection. J Geophys Res 2001, 106, 11597–11612. [Google Scholar]
- Heil, CA; Vargo, GA; Spence, DH; Neely, MB; Merkt, R; Lester, KM; Walsh, JJ. Hallegraeff, GA, Blackburn, SI, Bolch, CJ, Lewis, RJ, Eds.; Evolution of a Gymnodinium Breve (Gymnodiniales, Dinopyhyceae) Red Tide Bloom on the West Florida Shelf: Relationship with Organic Nitrogen and Phosphorus. In Harmful Algal Blooms 2000; Intergovernmental Oceanographic Commission of UNESCO: Paris, FR, 2001; pp. 161–164. [Google Scholar]
- Heil, CA; Vargo, GA; Spence, DH; Neely, MB; Merkt, R; Lester, KM; Walsh, JJ. Hallegraeff, GA, Blackburn, SI, Bolch, CJ, Lewis, RJ, Eds.; Nutrient stoichiometry of a Gymnodinium breve bloom: what limits blooms in oligotrophic environments? In Harmful Algal Blooms 2000; Intergovernmental Oceanographic Commission of UNESCO: Paris, FR, 2001; pp. 165–168. [Google Scholar]
- van Dolah, FM. Marine Algal Toxins: Origins, Health Effects and Their Increased Occurrence. Environ Health Perspect 2000, 108, 133–141. [Google Scholar]
- Gilbert, PM; Steitzinger, S; Heil, CA; Burkholder, JM; Parrow, MW; Codispoti, LA; Kelly, V. The Role of Eutrophication in the Global Proliferation of Harmful Algal Blooms. Oceanography 2005, 18, 198–209. [Google Scholar]
- Peperzak, L. Future Increase in Harmful Algal Blooms in the North Sea due to Climate Change. Water Science & Technology 2005, 51, 31–36. [Google Scholar]
- Magana, HA; Contreras, C; Villareal, TA. Historical Assessment of Karenia brevis in the Western Gulf of Mexico. Harmful Algae 2003, 2, 163–171. [Google Scholar]
- Morris, PD; Campbell, DS; Taylor, TJ; Freeman, JI. Clinical and Epidemiological Features of Neurotoxic Shellfish Poisoning in North Carolina. Am J Pub Health 1991, 81, 471–474. [Google Scholar]
- Sobel, J; Painter, J. Illness Caused by Marine Toxins. CID 2005, 41, 1290–1296. [Google Scholar]
- Haywood, AJ; Steidinger, KA; Truby, EW; Berquist, PR; Berquist, PL; Adamson, J; Mackenzie, L. Comparative Morphology and Molecular Phylogenetic Analysis of Three New Species of the Genus Karenia (Dinophyceae) from New Zealand. J Phycol 2004, 40, 165–179. [Google Scholar]
- Ishida, H; Muramatsu, N; Nukay, H; Kosuge, T; Tsuji, K. Study on Nuerotoxic Shellfish Poisoning Involving the Oyster, Crassostrea Gigas, in New Zealand. Toxicon 1996, 34, 1050–1053. [Google Scholar]
- MacLean, JL. Indo Pacific Red Tides. Toxic Dinoflagellate Blooms. In Proceedings of the Second International Conference on Toxic Dinoflagellate Blooms, Key Biscayne, FL, USA, 1979; pp. 173–178.
- Chang, FH. Occurrence of Gymnodinium, a Toxic Dinoflagellate Species off Wairarapa. NIWA News Forum. Water Atmos 1998, 6, 4. [Google Scholar]
- Todd, K. A Review of NSP Monitoring in New Zealand in Support of a New Programme; Cawthron Report No. 660; Cawthron Institute: Nelson, New Zealand, 2002. [Google Scholar]
- Morohashi, A; Satake, M; Murata, K; Naoki, H; Kaspar, HF; Yasumoto, T. Brevetoxin B3, a New Brevetoxin Analog Isolated from the Greenshell Mussel Perna Canaliculus Involved in Neurotoxic Shellfish Poisoning in New Zealand. Tetrahedron Lett 1995, 36, 8895–8998. [Google Scholar]
- Morohashi, A; Satake, M; Naoki, H; Kaspar, HF; Oshima, Y; Yasumoto, T. Brevetoxin B4 Isolated from Greenshell Mussel, Perna Canaliculus, the Major Toxin Involved in Neurotoxic Shellfish Poisoning in New Zealand. Nat Toxins 1999, 7, 45–48. [Google Scholar]
- Ishida, H; Nozawa, A; Totoribe, K; Muramatsu, N; Nukaya, H; Tsuji, K; Yamaguchi, K; Yasumoto, T; Kasper, H; Berkett, N; Kosuge, T. Brevetoxin B1, a New Polyether Marine Toxin from the New Zealand Shellfish, Austrovenus Stutchburyi. Tetrahedron Lett 1995, 36, 725–728. [Google Scholar]
- Carm Tomas, personal communication.
- Steidinger, KA; Carlson, P; Baden, D; Rodriguez, C; Seagle, J. Neurotoxic Shellfish Poisoning due to Toxin Retention in the Clam Chione Cancellata. Harmful Algae 1998, 457–458. [Google Scholar]
- Plakas, SM; Wang, Z; El Said, KR; Jester, ELE; Granade, HR; Flewelling, L; Scott, P; Dickey, RW. Brevetoxin Metabolism and Elimination in the Eastern Oyster (Crassostrea Virginica) After Controlled Exposure to Karenia brevis. Toxicon 2004, 44, 677–685. [Google Scholar]
- Plakas, SM; El Said, KR; Jester, ELE; Granade, HR; Musser, SM; Dickey, RW. Confirmation of Brevetoxin Metabolism in the Eastern Oyster (Crassostrea Virginica) by Controlled Exposures to Pure Toxins and to Karenia brevis Cultures. Toxicon 2002, 40, 721–729. [Google Scholar]
- Summerson, HC; Peterson, CH. Recruitment Failure of the Bay Scallop, Argopecten Irradians Concentricus, During the First Red Tide, Pytchodiscus Brevis, Outbreak Recorded in North Carolina. Estuaries 1990, 13, 322–331. [Google Scholar]
- Woofter, RT; Bendtro, K; Ramsdell, JS. Uptake and Elimination of Brevetoxin in Blood of Striped Mullet (Mugil Cephalus) After Aqueous Exposure to Karenia brevis. Env Health Perspect 2005, 113, 11–16. [Google Scholar]
- Naar, J; Weidner, A; Baden, D. Steidinger, KA, Landsberg, JH, Tomas, CR, Vargo, GA, Eds.; Competitive elisa: an accurate, quick and effective tool to monitor brevetoxins in environmental and biological samples. In Harmful Algae 2002; Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography and Intergovernmental Oceanographic Commission of UNESCO: St. Petersburg, FL, USA, 2004; pp. 291–293. [Google Scholar]
- Naar, JP; Flewelling, LJ; Lenzi, A; Abbott, JP; Granholm, A; Jacocks, HM; Gannon, D; Henry, M; Pierce, R; Baden, DG; Wolny, J; Landsberg, JH. Brevetoxins, Like Ciguatoxins, are Potent Ichthyotoxic Neurotoxins That Accumulate in Fish. Toxicon 2007, 50, 707–723. [Google Scholar]
- Naar, J; Flewelling, L; Lenzi, A; Landsberg, JH; Jacocks, H; Musser, S; Bourdelais, A; Steidinger, K; Baden, DG. Experimental Bioaccumulation of Ichthyotoxic Brevetoxins in Healthy Fish. In Second Symposium on Harmful Marine Algae in the US, Woods Hole, Massachusetts, USA, Dec. 2003.
- Baden, DG. Marine Food-borne Dinoflagellate Toxins. Int Rev Cytol 1983, 82, 99–150. [Google Scholar]
- Baden, DG. Brevetoxins: Unique Polyether Dinoflagellate Toxins. FASEB J 1989, 3, 1807–1817. [Google Scholar]
- Shimizu, Y. Recent Progress in Marine Toxin Research. Pure Appl Chem 1982, 54, 1973–1980. [Google Scholar]
- Baden, DG; Bourdelais, AJ; Jacocks, H; Michelliza, S; Naar, J. Natural and Derivative Brevetoxins: Historical Background, Multiplicity, and Effects. Environ Health Perspect 2005, 113, 621–625. [Google Scholar]
- Mazumder, PK; Dube, SN. Marine Toxins as Molecular Probes for Biological Interactions. Ind J Physiol & Applied Sci 1996, 50. [Google Scholar]
- Dechraoui, MY; Naar, J; Pauillac, S; Legrand, AM. Ciguatoxins and Brevetoxins, Neurotoxic Polyether Compounds Active on Sodium Channels. Toxicon 1999, 37, 125–143. [Google Scholar]
- Bottein Dechraoui, M-Y; Tiedeken, JA; Persad, R; Wang, Z; Granade, HR; Dickey, RW; Ramsdell, JS. Use of Two Detection Methods to Discriminate Ciguatoxins from Brevetoxins: Application to Great Barracuda from Florida Keys. Toxicon 2005, 46, 261–270. [Google Scholar]
- Huang, JMC; Wu, CH; Baden, DG. Depolarizing Action of a Red-tide Dinoflagellate Brevetoxin on Axonal Membranes. J Pharmacol Exp Ther 1984, 229, 615–621. [Google Scholar]
- Poli, M; Mende, TJ; Baden, D. Brevetoxins, Uunique Activators of Voltage-sensitve Sodium Channels Bind to Specific Sites in Rat Synaptosomes. Mol Pharmacol 1986, 30, 129–135. [Google Scholar]
- Wu, CH; Narahashi, T. Mechanism of Action of Novel Marine Neurotoxins in Ion Channels. Annu Rev Pharmacol Toxicol 1988, 28, 141. [Google Scholar]
- McFarren, EF; Tanabe, H; Silva, FJ; Wilson, WB; Campbell, JE; Lewis, KH. The Occurrence of Ciguatera-like Poison in Oysters, Clams and Gymnodinium Breve Cultures. Toxicon 1965, 3, 111–123. [Google Scholar]
- Hughes, JM; Merson, MH. Fish and Shellfish Poisoning. N Engl J Med 1976, 295, 1117–1120. [Google Scholar]
- Sakamoto, Y; Lockey, RF; Krzanowski, JJ. Shellfish and Fish Poisoning Related to the Toxic Dinoflagellates. S Med J 1987, 80, 866–872. [Google Scholar]
- Poli, MA; Templeton, CB; Thompson, WL; Hewetson, JF. Clearance, Distribution and Elimination of Brevetoxin PbTx-3 in Rats. Toxicon 1990, 28, 903–910. [Google Scholar]
- Poli, MA; Templeton, CB; Pace, JG; Hines, HB. Hall, S, Strichartz, G, Eds.; Detection, metabolism, and pathophysiology of brevetoxins. In Marine Toxins: Origins, Structure and Pharmacology; American Chemical Society, ACS Symposium Series: Washington, DC, USA, 1990; Volume 418, pp. 176–191. [Google Scholar]
- Cattet, M; Geraci, JB. Distribution and Elimination of Ingested Brevetoxin (PbTx-3) in Rats. Toxicon 1993, 31, 1483–1586. [Google Scholar]
- Baden, DG; Mende, TJ. Toxicity of Two Toxins from the Florida Red Tide Marine Dinoflagellate, Gymnodinium breve. Toxico 1982, 20, 457–461. [Google Scholar]
- Baden, DG; Mende, TJ; Bikhazi, G; Leung, I. Bronchoconstriction Caused by Florida Red Tide Toxins. Toxicon 1982, 20, 929–932. [Google Scholar]
- Baden, DG; Fleming, LE; Bean, JA. deWolf, FA, Ed.; Marine toxins. In Handbook of Clinical Neurology: Intoxications of the Nervous System Part II, Natural Toxins and Drugs; Elsevier Science: Amsterdam, 1995; Volume 21, Chapter 8; pp. 141–175. [Google Scholar]
- Poli, MA; Musser, SM; Dickey, RW; Eilers, PP; Hall, S. Neurotoxic Shellfish Poisoning and Brevetoxin Metabolites: A Case Study from Florida. Toxicon 2000, 38, 981–993. [Google Scholar]
- Terzagian, R. Five Cluster of Neurotoxic Shellfish Poisoning (NSP) in Lee County, July 2006. Florida Department of Health Epi Updates 2006. [Google Scholar]
- Toyofuku, H. Joint FAO/WHO/IOC Activities to Provide Scientific Advice on Marine Biotoxins (research report). Marine Poll Bull 2006, 52, 1735–1745. [Google Scholar]
- Benson, JM; Hahn, FF; March, TH; McDonald, JD; Gomez, AP; Sopori, MJ; Bourdelais, AJ; Naar, J; Zaias, J; Bossart, GD; Baden, DG. Inhalation Toxicity of Brevetoxin 3 in Rats Exposed for Twenty-two Days. Environ Health Perspect 2005, 113, 626–631. [Google Scholar]
- Benson, JM; Gomez, AP; Statom, GL; Tibbetts, BM; Fleming, LE; Backer, LC; Reich, A; Baden, DG. Placental Transport of Brevetoxin-3 in CD-1 Mice. Toxicon 2006, 48, 1018–1026. [Google Scholar]
- Abraham, WM; Baden, DG. Mechanisms of Red Tide-induced Bronchial Responses. Int Soc Exposure Anal 2001, 126. [Google Scholar]
- Benson, J; Tischler, D; Baden, D. Uptake, Tissue Distribution, and Excretion of PbTx-3 Administered to Rats by Intratracheal Instillation. J Toxins Environ Health 1999, 56, 345–355. [Google Scholar]
- Tibbetts, BM; Baden, DG; Benson, JM. Uptake, Tissue Distribution, and Excretion of Brevetoxin-3 Administered to Mice by Intratracheal Instillation. J Toxicol Environ Health 2006, A69, 1325–1335. [Google Scholar]
- Woofter, R; Bottein Dechraoui, M-Y; Garthwaite, I; Towers, NR; Gordon, CJ; Cordova, J; Ramsdell, JS. Measurement of Brevetoxin Levels by Radioimmunoassay of Blood Collection Cards After Acute, Long-term, and Low-dose Exposure in Mice. Env Health Persp 2003, 111, 1595–1600. [Google Scholar]
- Sayer, A; Hu, Q; Bourdelais, AJ; Baden, DG; Gibson, JE. The Effect of Brevenal on Brevetoxin-induced DNA Damage in Human Lymphocytes. Arch Toxicol 2005, 79, 683–688. [Google Scholar]
- Abraham, WM; Bourdelais, AJ; Sabater, JR; Ahmed, A; Lee, TA; Serebriakov, I; Baden, DG. Airway Responses to Aerosolized Brevetoxins in an Animal Model of Asthma. Am J Respir Crit Care Med 2004, 171, 26–34. [Google Scholar]
- Bourdelais, AJ; Campbell, S; Jacocks, H; Naar, J; Wright, JLC; Carsi, J; Baden, DG. Brevenal is a Natural Inhibitor of Brevetoxin Action in Sodium Channel Receptor Binding Assays. Cell Mol Neurobiol 2004, 24, 553–563. [Google Scholar]
- Kirkpatrick, B; Fleming, LE; Squicciarini, D; Backer, LC; Clark, R; Abraham, W; Benson, J; Cheng, YS; Johnson, D; Pierce, R; Zaias, J; Bossart, GD; Baden, DG. Literature Review of Florida Red Tide: Implication for Human Health Effects. Harmful Algae 2004, 3, 99–115. [Google Scholar]
- Baden, DG; Adams, DJ. Botana, LM, Ed.; Brevetoxins: chemistry, mechanisms of action and methods of detection. In Seafood and Freshwater Toxins; Marcel Dekker: New York, 2000; pp. 505–532. [Google Scholar]
- Dickey, R; Jester, E; Granade, R; Mowdy; Moncreiff, C; Rebarchik, D; Robl, M; Musser, S; Poli, M. Monitoring of Brevetoxins During a Gymnodinium Breve Red Tide: Comparison of a Sodium Channel Specific Cytotoxicity Assay and Mouse Bioassay for Determination of Neurotoxic Shellfish Toxins in Shellfish Extracts. Nat Toxins 1999, 7, 157–165. [Google Scholar]
- Fleming, LE; Backer, LC; Baden, DG. Overview of Aerosolized Florida Red Tide Toxins: Exposure and Effects. Environ Health Perspect 2005, 113, 618–620. [Google Scholar]
- Baden, DG; Trainer, VL. Falconer, R, Ed.; The mode and action of toxins and seafood poisoning. In Algal Toxins and Seafood in Drinking Water; Academic Press: San Diego, 1993; pp. 49–74. [Google Scholar]
- Ishida, H; Nozawa, A; Nukaya, H; Rhodes, L; McNabb, P; Holland, PT; Tsuji, K. Confirmation of Brevetoxin Metabolism in Cockle, Austrovenous Stutchburyi, and Greenshell Mussel, Perna Canaliculus, Associated with New Zealand Neurotoxic Shellfish Poisoning, by Controlled Exposure to Karenia brevis Culture. Toxicon 2004, 43, 701–712. [Google Scholar]
- Terzagian, R. Neurotoxic Shellfish Poisoning, Charlotte County, 2005. Florida Department of Health Epi Updates 2005. [Google Scholar]
- Watkins, SM; Reich, A; South, R; Terzagian, R; Hammond, R; Blackmore, C; et al. Features of Neurotoxic Shellfish Poisoning from Recreationally Harvested Clams in Florida 2006: Epidemiologic and clinical factors (manuscript in progress).
- Friedman, MA; Fleming, LE; Fernandez, M; Schrank, K; Dickey, B; Bienfang, P; Backer, L; Bottein, MY; Wiesman, R; Ayyar, R. Ciguatera Fish Poisoning: Treatment and Management. Mar Drugs 2008, 6. (in press). [Google Scholar]
- Fleming, LE; Bean, JA; Katz, D; Hammond, R. Hui, YH, Kits, D, Stanfield, PS, Eds.; The epidemiology of seafood poisoning. In Foodborne Disease Handbook, Seafood and Environmental Toxins; Volume 4, Marcel Dekker: New York, 2001; pp. 287–310. [Google Scholar]
- Noble, RC. Death on the Half Shell: The Health Hazards of Eating Shellfish. Perspect Biol Med 1990, 33, 313–322. [Google Scholar]
- Martin, R; Garcia, T; Sanz, B; Hernandez, PE. Seafood Toxins: Poisoning by Bivalve Consumption. Food Sci Tech Int 1996, 2, 13–22. [Google Scholar]
- Music, SI; Howell, JT; Brumback, LC. Red Tide: Its Public Health Implications. Fl Med J 1973, 60, 27–29. [Google Scholar]
- Harris, JB; Goonetilleke, A. Animal Poisons and the Nervous System: What the Neurologist Needs to Know. J Neurol Neurosurg Psychiatry 2004, 75(Suppl III), iii:40–iii:46. [Google Scholar]
- Chegini, S; Metcalfe, DD. Contemporary Issues in Food Allergy: Seafood Toxin-induced Disease in the Differential Diagnosis of Allergic Reactions. Allergy and Asthma Proc 2005, 26, 183–190. [Google Scholar]
- Arnold, T. Toxicity, Shellfish. Home Page. http://www.emedicine.com/emerg/topic528.htm/.
- Stommel, EW; Watters, MR. Marine Neurotoxins: Ingestible Toxins. Current Treatment Options in Neurology 2004, 6, 104–114. [Google Scholar]
- Isbister, GK; Kiernan, MC. Neurotoxic Mmarine Poisoning. Lancet Neurol 2005, 4, 219–228. [Google Scholar]
- Fleming, LE; Easom, J. Seafood Poisoning. Travel Med Monthly 1998, 2, 1–14. [Google Scholar]
- Fleming, LE; Stinn, J. Shellfish Poisonings. Travel Med Monthly 1999, 3, 1–6. [Google Scholar]
- Blythe, DG; Hack, E; Washington, G; Fleming, LE. Hui, YH, Kits, D, Stanfield, PS, Eds.; The medical management of seafood poisoning. In Foodborne Disease Handbook, Seafood and Environmental Toxins; Volume 4, Marcel Dekker: New York, 2000; pp. 311–319. [Google Scholar]
- Mattei, C; Molgo, J; Legrand, AM; Benoit, E. Ciguatoxins and Brevetoxins: Dissection of Their Neurobiological Actions. J Soc Biol 1999, 193, 329–344. [Google Scholar]
- Hua, Y; Lu, W; Henry, MS; Pierce, RH; Cole, RB. Online High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry for the Determination of Brevetoxins in ‘Red Tide’ Algae. Anal Chem 1995, 67, 1815–1823. [Google Scholar]
- US Food and Drug Administration, Fish and Fisheries Products Hazards and Control Guide, 3 ed; Center for Food Safety and Applied Nutrution, Office of Seafood, US Food and Drug Administration: Rockville, MD, 2001; p. 74.
- Red Tide Regulations, Technical Bulletin No. 2; Florida Department of Agriculture and Consumer Services: Tallahassee, FL, 2002.
- American Public Health Association, Method for the bioassay of Gymnodinium breve toxin(s) in shellfish. In Recommended Procedures for the Examination of Sea Water and Shellfish, 4 ed; American Public Health Association: Washington, DC, USA, 1970; pp. 61–66.
- Naar, J; Bourdelais, A; Tomas, C; Kubanek, J; Whitney, PL; Flewelling, L; Steidinger, K; Lancaster, J; Baden, DG. A Competitive ELISA to Detect Brevetoxins from Karenia brevis (Formerly Gymnodinium Breve) in Seawater, Shellfish, and Mammalian Body Fluid. Environ Health Persp 2002, 110, 179–185. [Google Scholar]
- Poli, M; Rein, KS; Baden, DG. Radioimmunassay for Pbtx-2 Type Brevetoxins: Epitope Specificity of Two Anti-PbTx Sera. J AOAC Int 1995, 78, 538–542. [Google Scholar]
- Dickey, R; Plakas, S; Jester, E; Rein, ESK; Johannessen, J; Flewelling, L; Scott, P; Hammond, D; van Dolah, F; Leighfield, T; Bottein Dechraoui, M-Y; Ramsdell, J; Pierce, R; Henry, M; Poli, M; Walker, K; Kurtz, J; Naar, J; Baden, D; Musser, S; White, K; Truman, P; Hawryluk, T; Wekell, M; Stirling, D; Quilliam, M; Lee, J. Steidinger, K, Landsberg, J, Tomas, CR, Eds.; Multi-laboratory study of five methods for the determination of brevetoxins in shellfish tissue extracts. In Harmful Algae 2002; Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO: St. Petersburg, FL, USA, 2004; pp. 300–302. [Google Scholar]
- Twiner, MJ; Bottein Dechraoui, M-Y; Wang, Z; Mikulski, CM; Henry, MS; Pierce, RH; Doucette, GJ. Extraction and Analysis of Lipophilic Brevetoxins from the Red Tide Dinoflagellate Karenia brevis. Anal Biochem 2007, 369, 128–135. [Google Scholar]
- Backer, LC; Fleming, LE; Rowan, A; Cheng, Y-S; Benson, J; Pierce, R; Zaias, J; Bean, J; Bossart, GD; Johnson, D; Quimbo, R; Baden, DG. Recreational Exposure to Aerosolized Brevetoxins During Florida Red Tide Events. Harmful Algae 2003, 2, 19–28. [Google Scholar]
- Backer, LC; Schurz Rogers, H; Fleming, LE; Kirkpatrick, B; Benson, J. Dabrowski, W, Ed.; Phycotoxins in marine seafood. In Chemical and Functional Properties of Food Components: Toxins in Food; CRC Press: Boca Rotan, FL, USA, 2005; pp. 155–190. [Google Scholar]
- Fleming, LE; Backer, L; Rowan, A. Massaro, EJ, Ed.; The epidemiology of human illness associated with harmful algal blooms. In Handbook of Neurotoxicity; Volume 1, Humana Press: Totowa, NJ, USA, 2001; pp. 365–384. [Google Scholar]
- Hopkins, RS; Heber, S; Hammond, R. Water Related Disease in Florida: Continuing Threats Require Vigilance. J Fl Med Assoc 1997, 84, 441–445. [Google Scholar]
- Viviani, R. Eutrophication, Marine Biotoxins, Human Health. Sci Total Environ 1992, (suppl), 631–662. [Google Scholar]
- Florida Department of Health. http://www.doh.state.fl.us/Disease%5Fctrl/.
- Ahmed, FE. Naturally Occurring Seafood Toxins. J Toxicol Toxin Reviews 1991, 10, 263–287. [Google Scholar]
- Mackenzie, LL; Rhodes, D; Till, D; Chang, FH; Kaspar, H; Haywood, A; Kapa, J; Walker, B. Lassus, P, Arzul, G, Erard, E, Gentian, P, Marcaillou, C, Eds.; A Gymnodinium bloom and the contamination of shellfish with lipid soluble toxins in New Zealand, Jan-April 1993. In Harmful Marine Algal Blooms; Lavoisier Intercept LTD: Paris, FR, 1995; pp. 795–800. [Google Scholar]
- Fowler, PK; Tester, PA. Impacts of the 1987–88 North Carolina Red Tide. J Shellfish Res 1989, 8, 440. [Google Scholar]
- Gessner, BD. Botana, LM, Ed.; Impact of toxic episodes: neurotoxic toxins. In Seafood and Freshwater Toxins; Marcel Dekker: New York, NY, USA, 2000; pp. 65–90. [Google Scholar]
- Woodcock, AH. Note Concerning Human Respiratory Irritation Associated with High Concentrations of Plankton and Mass Mortality of Marine Organisms. J Mar Res 1948, 7, 56–62. [Google Scholar]
- Fleming, LE; Kirkpatrick, B; Backer, LC; Bean, JA; Wanner, A; Reich, A; Zaias, J; Cheng, YS; Pierce, R; Naar, J; Abraham, WM; Baden, DG. Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma. Chest 2007, 131, 187–194. [Google Scholar]
- Kirkpatrick, B; Fleming, LE; Backer, LC; Bean, JA; Tamer, R; Kirkpatrick, G; Kane, T; Wanner, A; Dalpra, D; Reich, A; Baden, DG. Environmental Exposures to Florida Red Tides: Effects on Emergency Room Respiratory Diagnoses Admissions. Harmful Algae 2006, 5, 526–533. [Google Scholar]
- Abraham, WM; Bourdelais, AJ; Ahmen, A; Serebriakov, I; Baden, DG. Effects of Inhaled Brevetoxins in Allergic Airways: Toxin-Allergen Interactions and Pharmacologic Intervention. Environ Health Perspect 2005, 113, 632–637. [Google Scholar]
- Backer, LC; Fleming, LE; Rowan, AD; Baden, DG. Hallegraeff, GM, Anderson, DM, Cembella, AD, Eds.; Epidemiology, public health and human diseases associated with harmful marine algae. In Manual on Harmful Marine Microalgae; UNESCO Publishing: Paris, FR, 2003; pp. 725–750. [Google Scholar]
- Pierce, RH; Henry, MS; Blum, PC; Hamel, SL; Kirkpatrick, B; Cheng, YS; Zhou, Y; Irvin, CM; Naar, J; Weidner, A; Fleming, LE; Backer, LC; Baden, DG. Brevetoxin Composition in Water and Marine Aerosol Along a Florida Beach: Assessing Potential Human Exposure to Marine Biotoxins. Harmful Algae 2005, 4, 965–972. [Google Scholar]
- Milan, A; Nierenberg, K; Fleming, LE; Bean, JA; Wanner, A; Reich, A; Backer, LC; Jayroe, D; Kirkpatrick, B. Reported Respiratory Symptom Intensity in Asthmatics During Exposure to Aerosolized Florida Red Tide Toxins. J Asthma 2007, 44, 583–587. [Google Scholar]
- Fleming, LE; Jerez, E; Blair Stephan, W; Cassedy, A; Bean, JA; Reich, A; Kirkpatrick, B; Backer, L; Nierenberg, K; Watkins, S; Hollenbeck, J; Weisman, R. Evaluation of Harmful Algal Bloom Outreach Activities. Mar Drugs 2007, 5, 208–219. [Google Scholar]
- Landsberg, JH; Steidinger, KA. Reguera, B, Blanco, J, Fernandez, ML, Wyatt, T, Eds.; A historical review of Gymnodinium breve red tides implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. In Harmful Algae; Intergovernmental Oceanographic Commission of UNESCO: Paris, FR, 1998; pp. 97–100. [Google Scholar]
- Gunter, G; Walton Smith, FG; Williams, RH. Mass Mortality of Marine Animals on the Lower West Coast of Florida, November 1946–January 1947. Science 1948, 105, 256. [Google Scholar]
- Layne, JN. Observations on Marine Mammals in Florida Water. Bull Fl State Mus 1965, 9, 131–181. [Google Scholar]
- Landsberg, JH; van Dolah, F; Doucette, G. Belkin, S, Colwell, R, Eds.; Marine and estuarine harmful algal blooms: impacts on human and animal health. In Oceans and Health: Pathogens in the Marine Environment; Springer: New York, NY, USA, 2005; pp. 165–215. [Google Scholar]
- Bossart, GD; Baden, DG; Ewing, RY; Roberts, B; Wright, SD. Brevetoxicosis in Manatees (Trichechus Manatus Latirostris) from the 1996 Epizootic: Gross, Histologic and Immunohistochemical Features. Toxicol Pathol 1998, 26, 276–282. [Google Scholar]
- O’Shea, TJ; Rathbun, GB; Bonde, RK; Buergelt, CD; Odell, DK. An Epizootic of Florida Manatees associated with Dinoflagellate Bloom. Marine Mammal Sci 1991, 7, 165–179. [Google Scholar]
- Fire, SE; Fauquier, D; Flewelling, LJ; Henry, M; Naar, J; Pierce, R; Wells, RS. Brevetoxin Exposure in Bottlenose Dolphins (Tursiops truncatus) Associated with Karenia brevis Blooms in Sarasota Bay, Florida. Mar Biol 2007, 152, 827–834. [Google Scholar]
- State of Florida, Florida Department of Agriculture and Consumer Services. Contingency Plan for the Control of Shellfish Potentially Contaminated by Marine Biotoxin. , revised, Nov. 29, 2007.
- Diaz, JH. Is Shellfish Consumption Safe? J La State Med Soc 2004, 156, 187–192. [Google Scholar]
- Fleming, LE; Broad, K; Clement, A; Dewailly, E; Elmir, S; Knap, A; Pomponi, SA; Smith, S; Solo Gabriele, H; Walsh, P. Oceans and Human Health: Emerging Public Health Risks in the Marine Environment. Mar Poll Bull 2006, 53, 545–560. [Google Scholar]
- Fleming, LE; Baden, DG; Bean, JA; Wiesman, R; Blythe, DG. Reguera, B, Blanco, ML, Fernenadez, ML, Wyatt, T, Eds.; Seafood toxin diseases: issues in epidemiology and community outreach. In Harmful Algae; Intergovernmental Oceanographic Commission of UNESCO: Paris, FR, 1998; pp. 245–248. [Google Scholar]
Share and Cite
Watkins, S.M.; Reich, A.; Fleming, L.E.; Hammond, R. Neurotoxic Shellfish Poisoning. Mar. Drugs 2008, 6, 431-455. https://doi.org/10.3390/md6030431
Watkins SM, Reich A, Fleming LE, Hammond R. Neurotoxic Shellfish Poisoning. Marine Drugs. 2008; 6(3):431-455. https://doi.org/10.3390/md6030431
Chicago/Turabian StyleWatkins, Sharon M., Andrew Reich, Lora E. Fleming, and Roberta Hammond. 2008. "Neurotoxic Shellfish Poisoning" Marine Drugs 6, no. 3: 431-455. https://doi.org/10.3390/md6030431
APA StyleWatkins, S. M., Reich, A., Fleming, L. E., & Hammond, R. (2008). Neurotoxic Shellfish Poisoning. Marine Drugs, 6(3), 431-455. https://doi.org/10.3390/md6030431