Bromophenols in Marine Algae and Their Bioactivities
Abstract
:1. Introduction
2. Bioactivities of BPs and Potential Use in Medicine
2.1. Antioxidant Activity
2.2. Anticancer Activity
2.3. Antimicrobial Activity
2.4. Anti-Diabetic Activity
2.5. Other Bioactivities
3. Conclusions
Acknowledgments
References
- Wijesekara, I; Pangestuti, R; Kim, SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym 2011, 84, 14–21. [Google Scholar]
- Guven, KC; Percot, A; Sezik, E. Alkaloids in marine algae. Mar. Drugs 2010, 8, 269–284. [Google Scholar]
- El Gamal, AA. Biological importance of marine algae. Saudi Pharm. J 2010, 18, 1–25. [Google Scholar]
- Katsui, N; Suzuki, Y; Kitamura, S; Irie, T. 5,6-dibromoprotocatechualdehyde and 2,3-dibromo-4,5-dihydroxybenzyl methyl ether: new dibromophenols from Rhodomela larix. Tetrahedron 1967, 23, 1185–1188. [Google Scholar]
- Saenger, P; Pedersén, M; Rowan, KS. Bromo-compounds of the red alga Lenormandia prolifera. Phytochemistry 1976, 15, 1957–1958. [Google Scholar]
- Weinstein, B; Rold, TL; Harrell, CE, Jr; Burns Iii, MW; Waaland, JR. Reexamination of the bromophenols in the red alga Rhodomela larix. Phytochemistry 1975, 14, 2667–2670. [Google Scholar]
- Kim, KY; Nam, KA; Kurihara, H; Kim, SM. Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008, 69, 2820–2825. [Google Scholar]
- Kurihara, H; Mitani, T; Kawabata, J; Takahashi, K. Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-glucosidase activity. Fish Sci 1999, 65, 300–303. [Google Scholar]
- Fan, X; Xu, NJ; Shi, JG. Bromophenols from the red alga Rhodomela confervoides. J. Nat. Prod 2003, 66, 455–458. [Google Scholar]
- Kim, KY; Nguyen, TH; Kurihara, H; Kim, SM. Alpha-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J. Food Sci 2010, 75, H145–H150. [Google Scholar]
- Kurihara, H; Mitani, T; Kawabata, J; Takahashi, K. Two new bromophenols from the red alga Odonthalia corymbifera. J. Nat. Prod 1999, 62, 882–884. [Google Scholar]
- Kurata, K; Amiya, T. Two new bromophenols from the red alga, Rhodomela larix. Chem. Lett 1977, 6, 1435–1438. [Google Scholar]
- Suzuki, M; Kowata, N; Kurosawa, E. Bromophenols from the red alga Rhodomela larix. Bull. Chem. Soc. Jpn 1980, 53, 2099–2100. [Google Scholar]
- Zhao, J; Fan, X; Wang, S; Li, S; Shang, S; Yang, Y; Xu, N; Lu, Y; Shi, J. Bromophenol derivatives from the red alga Rhodomela confervoides. J. Nat. Prod 2004, 67, 1032–1035. [Google Scholar]
- Zhao, J; Ma, M; Wang, S; Li, S; Cao, P; Yang, Y; Lu, Y; Shi, J; Xu, N; Fan, X; He, L. Bromophenols coupled with derivatives of amino acids and nucleosides from the red alga Rhodomela confervoides. J. Nat. Prod 2005, 68, 691–694. [Google Scholar]
- Ma, M; Zhao, J; Wang, S; Li, S; Yang, Y; Shi, J; Fan, X; He, L. Bromophenols coupled with methyl gamma-ureidobutyrate and bromophenol sulfates from the red alga Rhodomela confervoides. J. Nat. Prod 2006, 69, 206–210. [Google Scholar]
- Ma, M; Zhao, J; Wang, S; Li, S; Yang, Y; Shi, J; Fan, X; He, L. Bromophenols coupled with nucleoside bases and brominated tetrahydroisoquinolines from the red alga Rhodomela confervoides. J. Nat. Prod 2007, 70, 337–341. [Google Scholar]
- Kurata, K; Amiya, T. Disodium 2,3,6-tribromo-5-hydroxybenzyl-1′,4-distjlfate, a new bromophenol from the red alga, Symphyocladia latiuscula. Chem. Lett 1980, 9, 279–280. [Google Scholar]
- Kurata, K; Amiya, T. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl) ether from the red alga, Symphyocladia latiuscula. Phytochemistry 1980, 19, 141–142. [Google Scholar]
- Choi, JS; Park, HJ; Jung, HA; Chung, HY; Jung, JH; Choi, WC. A cyclohexanonyl bromophenol from the red alga Symphyocladia latiuscula. J. Nat. Prod 2000, 63, 1705–1706. [Google Scholar]
- Duan, XJ; Li, XM; Wang, BG. Highly brominated mono- and bis-phenols from the marine red alga Symphyocladia latiuscula with radical-scavenging activity. J. Nat. Prod 2007, 70, 1210–1213. [Google Scholar]
- Kurata, K; Amiya, T. A new bromophenol from the red alga Polysiphonia urceolata. Bull. Chem. Soc. Jpn 1980, 53, 2020–2022. [Google Scholar]
- Glombitza, KW; Sukopp, I; Wiedenfeld, H. Antibiotics from algae XXXVII. Rhodomelol and methylrhodomelol from Polysiphonia lanosa. Planta Med 1985, 51, 437–440. [Google Scholar]
- Aknin, M; Samb, A; Mirailles, J; Costantino, V; Fattorusso, E; Mangoni, A. Polysiphenol, a new brominated 9,10-dihydrophenanthrene from the senegalese red alga Polysyphonia ferulacea. Tetrahedron Lett 1992, 33, 555–558. [Google Scholar]
- Li, K; Li, XM; Ji, NY; Wang, BG. Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg. Med. Chem 2007, 15, 6627–6631. [Google Scholar]
- Li, K; Li, XM; Ji, NY; Wang, BG. Bromophenols from the marine red alga Polysiphonia urceolata with DPPH radical scavenging activity. J. Nat. Prod 2008, 71, 28–30. [Google Scholar]
- Kurata, K; Taniguchii, K; Takashima, K; Hayashi, I; Suzuki, M. Feeding-deterrent bromophenols from Odonthalia corymbifera. Phytochemistry 1997, 45, 485–487. [Google Scholar]
- Kubo, I; Ochi, M; Shibata, K; Hanke, FJ; Nakatsu, T; Tan, KS; Taniguchi, M; Kamikawa, T; Yamagiwa, Y; Arizuka, M; Wood, WF. Effect of a marine algal constituent on the growth of lettuce and rice seedlings. J. Nat. Prod 1990, 53, 50–56. [Google Scholar]
- Wiemer, DF; Idler, DD; Fenical, W. Vidalols A and B, new anti-inflammatory bromophenols from the Caribbean marine red alga Vidalia obtusaloba. Cell. Mol. Life Sci 1991, 47, 851–853. [Google Scholar]
- Konig, GM; Wright, AD. Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa. Planta Med 1997, 63, 186–187. [Google Scholar]
- Wang, W; Okada, Y; Shi, H; Wang, Y; Okuyama, T. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. J. Nat. Prod 2005, 68, 620–622. [Google Scholar]
- Barreto, M; Meyer, JJM. Isolation and antimicrobial activity of a lanosol derivative from Osmundaria serrata (Rhodophyta) and a visual exploration of its biofilm covering. S. Afr. J. Bot 2006, 72, 521–528. [Google Scholar]
- Han, LJ; Xu, NJ; Shi, JG; Yan, XJ; Zeng, CK. Isolation and pharmacological activities of bromophenols from Rhodomela confervoides. Chin. J. Oceanol. Limn 2005, 23, 226–229. [Google Scholar]
- Chung, HY; Ma, WCJ; Ang, PO; Kim, JS; Chen, F. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J. Agric. Food Chem 2003, 51, 2619–2624. [Google Scholar]
- Xu, X; Song, F; Wang, S; Li, S; Xiao, F; Zhao, J; Yang, Y; Shang, S; Yang, L; Shi, J. Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana. J. Nat. Prod 2004, 67, 1661–1666. [Google Scholar]
- Xu, XL; Fan, X; Song, FH; Zhao, JL; Han, LJ; Yang, YC; Shi, JG. Bromophenols from the brown alga Leathesia nana. J. Asian Nat. Prod. Res 2004, 6, 217–221. [Google Scholar]
- Green, D; Kashman, Y; Miroz, A. Colpol, a new cytotoxic C6-C4-C6 metabolite from the alga Colpomenia sinuosa. J. Nat. Prod 1993, 56, 1201–1202. [Google Scholar]
- Shi, D; Li, X; Li, J; Guo, S; Su, H; Fan, X. Antithrombotic effects of bromophenol, an alga-derived thrombin inhibitor. Chin. J. Oceanol. Limn 2010, 28, 96–98. [Google Scholar]
- Xu, XL; Fan, X; Song, FH; Zhao, JL; Han, LJ; Shi, JG. A new bromophenol from the brown alga Leathesia nana. Chin. Chem. Lett 2004, 15, 661. [Google Scholar]
- Sun, HH; Paul, VJ; Fenical, W. Avrainvilleol, a brominated diphenylmethane derivative with feeding deterrent properties from the tropical green alga Avrainvillea longicaulis. Phytochemistry 1983, 22, 743–745. [Google Scholar]
- Carte, BK; Troupe, N; Chan, JA; Westley, JW; Faulkner, DJ. Rawsonol, an inhibitor of HMG-CoA reductase from the tropical green alga Avrainvillea rawsoni. Phytochemistry 1989, 28, 2917–2919. [Google Scholar]
- McConnell, OJ; Hughes, PA; Targett, NM. Diastereoisomers of cyclocymopol and cyclocymopol monomethyl ether from Cymopolia barbata. Phytochemistry 1982, 21, 2139–2141. [Google Scholar]
- Park, M; Fenical, W; Hay, ME. Debromoisocymobarbatol, a new chromanol feeding deterrent from the marine alga Cymopolia barbata. Phytochemistry 1992, 31, 4115–4118. [Google Scholar]
- Flodin, C; Whitfield, FB. 4-Hydroxybenzoic acid: a likely precursor of 2,4,6-tribromophenol in Ulva lactuca. Phytochemistry 1999, 51, 249–255. [Google Scholar]
- Colon, M; Guevara, P; Gerwick, WH; Ballantine, D. 5′-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green alga Avrainvillea nigricans. J. Nat. Prod 1987, 50, 368–374. [Google Scholar]
- Chen, JL; Gerwick, WH; Schatzman, R; Laney, M. Isorawsonol and related IMP dehydrogenase inhibitors from the tropical green alga Avrainvillea rawsonii. J. Nat. Prod 1994, 57, 947–952. [Google Scholar]
- Estrada, DM; Martin, JD; Perez, C. A new brominated monoterpenoid quinol from Cymopolia barbata. J. Nat. Prod 1987, 50, 735–737. [Google Scholar]
- Wall, ME; Wani, MC; Manikumar, G; Taylor, H; Hughes, TJ; Gaetano, K; Gerwick, WH; McPhail, AT; McPhail, DR. Plant antimutagenic agents 7. structure and antimutagenic properties of cymobarbatol and 4-isocymbarbatol, new cymopols from green alga (Cymopolia barbata). J. Nat. Prod 1989, 52, 1092–1099. [Google Scholar]
- Whitfield, FB; Helidoniotis, F; Shaw, KJ; Svoronos, D. Distribution of bromophenols in species of marine algae from eastern Australia. J. Agric. Food Chem 1999, 47, 2367–2373. [Google Scholar]
- Lindsay, BS; Battershill, CN; Copp, BR. Isolation of 2-(3′-bromo-4′-hydroxyphenol)ethanamine from the New Zealand ascidian Cnemidocarpa bicornuta. J. Nat. Prod 1998, 61, 857–858. [Google Scholar]
- Rudi, A; Evan, T; Aknin, M; Kashman, Y. Polycitone B and prepolycitrin A: two novel alkaloids from the marine ascidian Polycitor africanus. J. Nat. Prod 2000, 63, 832–833. [Google Scholar]
- Carroll, AR; Healy, PC; Quinn, RJ; Tranter, CJ. Prunolides A, B, and C: novel tetraphenolic bis-spiroketals from the Australian ascidian Synoicum prunum. J. Org. Chem 1999, 64, 2680–2682. [Google Scholar]
- Fu, X; Schmitz, FJ; Govindan, M; Abbas, SA; Hanson, KM; Horton, PA; Crews, P; Laney, M; Schatzman, RC. Enzyme inhibitors: new and known polybrominated phenols and diphenyl ethers from four Indo-Pacific Dysidea sponges. J. Nat. Prod 1995, 58, 1384–1391. [Google Scholar]
- Fu, X; Schmitz, FJ. New brominated diphenyl ether from an unidentified species of Dysidea sponge. 13C NMR data for some brominated diphenyl ethers. J. Nat. Prod 1996, 59, 1102–1103. [Google Scholar]
- Handayani, D; Edrada, RA; Proksch, P; Wray, V; Witte, L; Van Soest, RW; Kunzmann, A; Soedarsono. Four new bioactive polybrominated diphenyl ethers of the sponge Dysidea herbacea from West Sumatra, Indonesia. J. Nat. Prod 1997, 60, 1313–1316. [Google Scholar]
- Ciminiello, P; Dell’Aversano, C; Fattorusso, E; Magno, S; Pansini, M. Chemistry of verongida sponges. 10. Secondary metabolite composition of the caribbean sponge Verongula gigantea. J. Nat. Prod 2000, 63, 263–266. [Google Scholar]
- Shridhar, DM; Mahajan, GB; Kamat, VP; Naik, CG; Parab, RR; Thakur, NR; Mishra, PD. Antibacterial activity of 2-(2′,4′-dibromophenoxy)-4,6-dibromophenol from Dysidea granulosa. Mar. Drugs 2009, 7, 464–471. [Google Scholar]
- Hattori, T; Konno, A; Adachi, K; Shizuri, Y. Four new bioactive bromophenols from the palauan sponge Phyllospongia dendyi. Fisheries Sci 2001, 67, 899–903. [Google Scholar]
- Liu, H; Namikoshi, M; Meguro, S; Nagai, H; Kobayashi, H; Yao, X. Isolation and characterization of polybrominated diphenyl ethers as inhibitors of microtubule assembly from the marine sponge Phyllospongia dendyi collected at Palau. J. Nat. Prod 2004, 67, 472–474. [Google Scholar]
- Hanif, N; Tanaka, J; Setiawan, A; Trianto, A; de Voogd, NJ; Murni, A; Tanaka, C; Higa, T. Polybrominated diphenyl ethers from the Indonesian sponge Lamellodysidea herbacea. J. Nat. Prod 2007, 70, 432–435. [Google Scholar]
- Utkina, NK; Denisenko, VA; Scholokova, OV; Virovaya, MV; Gerasimenko, AV; Popov, DY; Krasokhin, VB; Popov, AM. Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. J. Nat. Prod 2001, 64, 151–153. [Google Scholar]
- Utkina, NK; Denisenko, VA; Virovaya, MV; Scholokova, OV; Prokof’eva, NG. Two new minor polybrominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi. J. Nat. Prod 2002, 65, 1213–1215. [Google Scholar]
- Flodin, C; Whitfield, FB. Biosynthesis of bromophenols in marine algae. Water Sci. Technol 1999, 40, 53–58. [Google Scholar]
- Collén, J; Ekdahl, A; Abrahamsson, K; Pedersén, M. The involvement of hydrogen peroxide in the production of volatile halogenated compounds by Meristiella gelidium. Phytochemistry 1994, 36, 1197–1202. [Google Scholar]
- Kicklighter, CE; Kubanek, J; Hay, ME. Do brominated natural products defend marine worms from consumers? Some do, most don’t. Limnol. Oceanogr 2004, 49, 430–441. [Google Scholar]
- Xu, N; Fan, X; Yan, X; Li, X; Niu, R; Tseng, CK. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 2003, 62, 1221–1224. [Google Scholar]
- Popplewell, WL; Northcote, PT. Colensolide A: A new nitrogenous bromophenol from the New Zealand marine red alga Osmundaria colensoi. Tetrahedron Lett 2009, 50, 6814–6817. [Google Scholar]
- Lee, HS; Lee, TH; Lee, JH; Chae, CS; Chung, SC; Shin, DS; Shin, J; Oh, KB. Inhibition of the pathogenicity of magnaporthe grisea by bromophenols, isocitrate lyase inhibitors, from the red alga Odonthalia corymbifera. J. Agric. Food Chem 2007, 55, 6923–6928. [Google Scholar]
- Shoeib, NA; Bibby, MC; Blunden, G; Linley, PA; Swaine, DJ; Wheelhouse, RT; Wright, CW. In-vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia lanosa and some novel synthetic isomers. J. Nat. Prod 2004, 67, 1445–1449. [Google Scholar]
- Shi, D; Xu, F; He, J; Li, J; Fan, X; Han, L. Inhibition of bromophenols against PTP1B and anti-hyperglycemic effect of Rhodomela confervoides extract in diabetic rats. Chin. Sci. Bull 2008, 53, 2476–2479. [Google Scholar]
- Guo, S; Li, J; Su, H; Shi, D; Fan, X. Recent progess in the study of bromophenol derivatives from algae. Mar. Sci 2010, 34, 89–94. [Google Scholar]
- Zhao, W; Feng, X; Ban, S; Lin, W; Li, Q. Synthesis and biological activity of halophenols as potent antioxidant and cytoprotective agents. Bioorg. Med. Chem. Lett 2010, 20, 4132–4134. [Google Scholar]
- Lee, JH; Lee, TK; Kang, RS; Shin, HJ; Lee, HS. The in vitro antioxidant activities of the bromophenols from the red alga Tichocarpus crinitus and phenolic derivatives. J. Korean Magn. Reson. Soc 2007, 11, 56–63. [Google Scholar]
- Chen, L; Fang, Y; Zhu, T; Gu, Q; Zhu, W. Gentisyl alcohol derivatives from the marine-derived fungus Penicillium terrestre. J. Nat. Prod 2008, 71, 66–70. [Google Scholar]
- Liu, EH; Qi, LW; Wu, Q; Peng, YB; Li, P. Anticancer agents derived from natural products. Mini Rev. Med. Chem 2009, 9, 1547–1555. [Google Scholar]
- Shi, D; Li, J; Guo, S; Su, H; Fan, X. The antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo. Chin. J. Oceanol. Limn 2009, 27, 277–282. [Google Scholar]
- Xu, N; Fan, X; Yan, X; Tseng, CK. Screening marine algae from China for their antitumor activities. J. Appl. Phycol 2004, 16, 451–456. [Google Scholar]
- Gwynn, MN; Portnoy, A; Rittenhouse, SF; Payne, DJ. Challenges of antibacterial discovery revisited. Ann. N. Y. Acad. Sci 2010, 1213, 5–19. [Google Scholar]
- Silver, LL. Challenges of antibacterial discovery. Clin. Microbiol. Rev 2011, 24, 71–109. [Google Scholar]
- Oh, KB; Lee, JH; Chung, SC; Shin, J; Shin, HJ; Kim, HK; Lee, HS. Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorg. Med. Chem. Lett 2008, 18, 104–108. [Google Scholar]
- Oh, KB; Lee, JH; Lee, JW; Yoon, KM; Chung, SC; Jeon, HB; Shin, J; Lee, HS. Synthesis and antimicrobial activities of halogenated bis(hydroxyphenyl)methanes. Bioorg. Med. Chem. Lett 2009, 19, 945–948. [Google Scholar]
- Oh, KB; Jeon, HB; Han, YR; Lee, YJ; Park, J; Lee, SH; Yang, D; Kwon, M; Shin, J; Lee, HS. Bromophenols as Candida albicans isocitrate lyase inhibitors. Bioorg. Med. Chem. Lett 2010, 20, 6644–6648. [Google Scholar]
- Kim, SY; Kim, S; Oh, MJ; Jung, SJ; Kang, S. In vitro antiviral activity of red alga, Polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol 2011, 49, 102–106. [Google Scholar]
- Park, HJ; Kurokawa, M; Shiraki, K; Nakamura, N; Choi, JS; Hattori, M. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice. Biol. Pharm. Bull 2005, 28, 2258–2262. [Google Scholar]
- Jarald, E; Balakrishnan, JS; Jain, DC. Diabetes and herbal medicines. Iran. J. Pharmacol. Ther 2008, 7, 97–106. [Google Scholar]
- Koren, S; Fantus, IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab 2007, 21, 621–640. [Google Scholar]
- Guo, S; Li, J; Li, T; Shi, D; Han, L. Synthesis of three bromophenols from red algae as PTP1B inhibitors. Chin. J. Oceanol. Limn 2011, 29, 68–74. [Google Scholar]
- Suzen, S; Buyukbingol, E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr. Med. Chem 2003, 10, 1329–1352. [Google Scholar]
- Liu, M; Lin, XK. Institute of Oceanology, Chinese Academy of Science; Qingdao, China, Unpublished work; 2011. [Google Scholar]
- Shi, D; Li, J; Guo, S; Han, L. Antithrombotic effect of bromophenol, the alga-derived thrombin inhibitor. J. Biotechnol 2008, 136, S579. [Google Scholar]
- Olsen, CM; Meussen-Elholm, ETM; Holme, JA; Hongslo, JK. Brominated phenols: Characterization of estrogen-like activity in the human breast cancer cell-line MCF-7. Toxicol. Lett 2002, 129, 55–63. [Google Scholar]
- Legler, J; Brouwer, A. Are brominated flame retardants endocrine disruptors? Environ. Int 2003, 29, 879–885. [Google Scholar]
- Rios, JC; Repetto, G; Jos, A; del Peso, A; Salguero, M; Camean, A; Repetto, M. Tribromophenol induces the differentiation of SH-SY5Y human neuroblastoma cells in vitro. Toxicol. Vitro 2003, 17, 635–641. [Google Scholar]
- Hassenklöver, T; Predehl, S; Pilli, J; Ledwolorz, J; Assmann, M; Bickmeyer, U. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12). Aquat. Toxicol 2006, 76, 37–45. [Google Scholar]
- Haldén, AN; Nyholm, JR; Andersson, PL; Holbech, H; Norrgren, L. Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction. Aquat. Toxicol 2010, 100, 30–37. [Google Scholar]
- Deng, J; Liu, C; Yu, L; Zhou, B. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicol. Appl. Pharmacol 2010, 243, 87–95. [Google Scholar]
- Kammann, U; Vobach, M; Wosniok, W. Toxic effects of brominated indoles and phenols on zebrafish embryos. Arch. Environ. Contam. Toxicol 2006, 51, 97–102. [Google Scholar]
- Battistutta, R; Mazzorana, M; Sarno, S; Kazimierczuk, Z; Zanotti, G; Pinna, LA. Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem. Biol 2005, 12, 1211–1219. [Google Scholar]
Abbreviations
BPs | bromophenols |
SAR | structure and activity relationship |
T2DM | type 2 diabetes mellitus |
PTP1B | protein tyrosine phosphatase-1B |
HMG-CoA | 3-hydroxy-3-methylglutaryl coenzyme A |
MIC | minimum inhibitory concentration |
MCF-7 | human breast adenocarcinoma cell line |
KB | human carcinoma of the nasopharynx cell line |
DLD-1 | colorectal adenocarcinoma cell lines |
HCT-116 | human colon carcinoma cells |
HCT-8 | human epithelial intestinal cell line |
Bel-7402 | human hepatoma cell line |
BGC-823 | human gastric carcinoma cell line |
A549 | human lung adenocarcinoma epithelial cell line |
A2780 | human ovarian carcinoma |
SH-SY5Y | neuroblastoma cell line |
PC12 | neuroendocrine cells |
HELF | human embryo lung fibroblasts |
HSV-1 | herpes simplex type 1 |
APr HSV-1 | phosphonoacetic acid-resistant HSV-1 |
TK−HSV-1 | thymidine kinase deficient HSV-1 |
IHNV | infectious hematopoietic necrosis virus |
IPNV | infectious pancreatic necrosis virus |
No. | IC50 (μM) | Names |
---|---|---|
1.1 | 8.5 | (2R)-2-(2,3,6-tribromo-4,5-dihydroxybenzyl)-cyclohexanone [20] |
1.2 | 7.5 | 2,3,6-tribromo-4,5-dihydroxybenzylalcohol [20] |
1.3 | 18.5 | 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)pyrrolidin-2-one [21] |
1.4 | 24 | 2,3,6-tribromo-4,5-dihydroxybenzyl methyl sulfone [21] |
1.5 | 10.2 | 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)ethane [21] |
1.6 | 10.5 | 6-(2,3,6-tribromo-4,5-dihydroxybenzyl)-2,5-dibromo-3,4-dihydroxybenzyl methyl ether [21] |
1.7 | 8.1 | Bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane [21] |
1.8 | 8.5 | Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether [21] |
1.9 | 15.5 | 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether [21] |
1.10 | 14.0 | 2,3,6-tribromo-4,5-dihydroxymethylbenzene [21] |
1.11 | 24.7 | 2,3,6-tribromo-4,5-dihydroxybenzaldehyde [21] |
1.12 | 21.9 ± 0.1 | 3-(3-bromo-4,5-dihydroxyphenyl)-2-(3,5-dibromo-4-hydroxyphenyl) propionic acid [25] |
1.13 | 9.67 ± 0.04 | (E)-4-(3-bromo-4,5-dihydroxyphenyl)-but-3-en-2-one [25] |
1.14 | 16.11 ± 0.06 | (3,5-dibromo-4-hydroxyphenyl) acetic acid butyl ester [25] |
1.15 | 19.64 ± 0.09 | 1,2-bis(3-bromo-4,5-dihydroxyphenyl)ethane [25] |
1.16 | 20.3 | 3-bromo-4,5-dihydroxybenzaldehyde [26] |
1.17 | 35.8 | 3,5-dibromo-4-hydroxybenzaldehyde [26] |
1.18 | 6.8 | 7-bromo-9,10-dihydrophenanthrene-2,3,5,6-tetraol [26] |
1.19 | 6.1 | 4,7-dibromo-9,10-dihydrophenanthrene-2,3,5,6-tetraol [26] |
1.20 | 8.1 | 1,8-dibromo-5,7-dihydrodibenzo[c,e]oxepine-2,3,9,10-tetraol [26] |
1.21 | 15.1 | Urceolatol [26] |
1.22 | 96.2 | 2,6-dibromo-3,3′,4,4′,5-pentahydroxydiphenylmethanone [72] |
1.23 | 87.3 | 2,6-dichloro-3,3′,4,4′,5-pentahydroxydiphenylmethanone [72] |
No. | IC50 and cells | Names |
---|---|---|
2.1 | 2.5 (A549), 8.8 (BGC823) 2.7 (MCF-7), 4.8 (Bel7402) 16.8 (HCT-8) | 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether [35] |
2.2 | 1.8 (A549), 3.8 (BGC823) 2.7 (MCF-7), 2.2 (HCT-8) >18.2 (Bel7402) | 2,2′,3,3′-tetrabromo-4,4′,5,5′-tetrahydroxydiphenylmethane [35] |
2.3 | 8.27 (MCF-7) 6.36 (HT-1080), μg/mL | (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6- dihydroxy-1,3-dihydroisobenzofuran [76] |
2.4 | >19 (A549), 4.6 (BGC823) 3.4 (MCF-7), 5.5 (Bel7402) 2.8 (HCT-8) | 2,2′,3-tribromo-3′,4,4′,5-tetrahydroxy-6′-ethyloxymethyldiphenylmethane [35] |
2.5 | >19.5 (A549), 8.6 (BGC823) 21.4 (MCF-7), 20.7 (HCT-8) >1.9 (Bel7402) | 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5- methoxymethylpyrocatechol [35] |
2.6 | 5.4 (A549), 18 (BGC823) 4.6 (MCF-7), 7.4 (Bel7402) 5.9 (HCT-8) | Bis(2,3-dibromo-4,5-dihydroxybenzyl)ether [35] |
2.7 | 3.09 (KB), 3.18 (Bel-7402) 3.54 (A549), μg/mL | 3-bromo-4,5-dihydroxybenzoic acid methyl ester [33] |
2.8 | 8.71 (KB), 5.36 (Bel-7402) 7.56 (A549), μg/mL | 3-bromo-4,5-dihydroxybenzaldehyde [33] |
2.9 | 8.0 (HL-60) | Lanosol butenone [67] |
2.10 | 47 (KB) | 3-bromo-4,5-dihydroxybenzylalcohol [45] |
2.11 | 14.6 ± 3.1 (DLD-1) 14.1 ± 2.5 (HCT116) | Lanosol methyl ether [69] |
2.12 | 13.5 ± 2.3 (DLD-1) 2.51 ± 0.95 (HCT116) | Lanosol ethyl ether [69] |
2.13 | 12.4 ± 1.1 (DLD-1) 1.32 ± 0.3 (HCT116) | Lanosol n-propyl ether [69] |
2.14 | 1.72 ± 0.29 (DLD-1) 0.8 ± 0.63 (HCT116) | 2,5-dibromo-3,4-dihydroxybenzyl n-propyl ether [69] |
2.15 | 19.7 (A549), 19.9 (A2780) 19.4 (Bel-7402), 15.4 (HCT-8) 20.2 (BGC-823) | 2,3-dibromo-4,5-dihydroxyphenylethanol [16] |
2.16 | 14.7 (A549), 9.4 (A2780) 14.8 (Bel-7402), 14.0 (BGC-823) 14.6 (HCT-8) | 2,3-dibromo-4,5-dihydroxyphenylethanol sulfate [16] |
2.17 | 18.5 (A549), 20.8 (A2780) 20.4 (Bel-7402), 19.1 (BGC-823) 18.8 (HCT-8) | 3-bromo-4,5-dihydroxyphenylethanol sulfate [16] |
2.18 | 14.5 (A549), >16.9 (A2780) 13.5 (Bel-7402), 15.1 (BGC-823) 12.1 (HCT-8) | 3-bromo-2-(2,3-dibromo-4,5-dihydroxybenzyl)-4,5- dihydroxyphenyethanol sulfate [16] |
No. | MIC/IC50 and Microbe | Names |
---|---|---|
3.1 | MIC 140 μg/mL (a,b,c) | 3-bromo-4-(2,3-dibromo-4,5-dihydroxyphenyl) methyl-5-(hydroxymethyl)-1,2-benzenediol [66] |
3.2 | MIC 70 μg/mL (a) MIC 140 μg/mL (b,c,d,e) | 3-bromo-4-(2,3-dibromo-4,5-dihydroxyphenyl) methyl-5-(ethoxymethyl)-1,2-benzenediol [66] |
3.3 | MIC 70 μg/mL (a,b,c,d) IC50 2.1 ± 0.1 μM (ICL) | 3-bromo-4-(2,3-dibromo-4,5-dihydroxyphenyl) methyl-5-(methoxymethyl)-1,2-benzenediol [66,68] |
3.4 | MIC 70 μg/mL (a–g) IC50 2.0 ± 0.1 μM (ICL) | 4,4′-methylenebis(5,6-dibromo-1,2-benzenediol) [66,68] |
3.5 | MIC 70 μg/mL (a,b,f,g) MIC 140 μg/mL (d,e) MIC 35 μg/mL (c) | Bis(2,3-dibromo-4,5-dihydroxybenzyl)ether [66] |
3.6 | IC50 125.6 ± 8.6 μM (ICL) IC50 7.8 μM (h) | Lanosol methyl ether [67,68] |
3.7 | IC50 26.2 μM (h) | Lanosol butanone [67] |
3.8 | IC50 28.1 μM (h) | Rhodomelol [67] |
3.9 | IC50 116.1 ± 7.3 μM (ICL) | 3,5-dibromo-4-hydroxyphenylethylamine [68] |
3.10 | IC50 92.6 ± 5.8 μM (ICL) | 2,3-dibromo-4,5-dihydroxybenzylalcohol [68] |
3.11 | IC50 2.8 ± 0.2 μM (ICL) | 2,2′,3-tribromo-3′,4,4′,5-tetrahydroxy-6′-hydroxymethyl diphenylmethane [68] |
3.12 | MIC 0.69 ± 0.15 μg/mL (i) MIC 0.27 ± 0.07 μg/mL (j) | Lanosol ethyl ether [32] |
3.13 | IC50 27 ± 6.3 μM (IHNV) 22.0 ± 0.6 μM (IPNV) | 3-bromo-4,5-dihydroxybenzyl methyl ether [83] |
3.14 | IC50 45 ± 9.1 μM (IHNV) 57.0 ± 10.6 μM (IPNV) | 3-bromo-4,5-dihydroxybenzaldehyde [83] |
3.15 | IC50 3.02 μg/mL (HSV-1) 0.91 μg/mL (APr HSV-1) 1.41 μg/mL (TK−HSV-1) | 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether [84] |
3.16 | IC50 7.82 μg/mL (HSV-1) 7.20 μg/mL (APr HSV-1) 11.21 μg/mL (TK−HSV-1) | 2,3,6-tribromo-4,5-dihydroxybenzylalcohol [84] |
3.17 | IC50 4.11 μg/mL (HSV-1) | (2R)-2-(2,3,6-tribromo-4,5-dihydroxybenzyl)- cyclohexanone [84] |
No. | IC50 | Names |
---|---|---|
4.1 | 2.4 a | 2,2′,3,3′-tetrabromo-4,4′,5,5′-tetra-hydroxydiphenyl methane [70] |
4.2 | 1.7 a | 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)pyrocatechol [70] |
4.3 | 1.5 a 0.098 b | Bis(2,3-dibromo-4,5-dihydroxybenzyl)ether [8,10,11,70] |
4.4 | 0.84 a | 2,2′,3-tribromo-3′,4,4′,5-tetrahydroxy-6′-ethyloxymethyldiphenylmethane [70] |
4.5 | 0.03 b | Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether [8] |
4.6 | 100 b | 3-bromo-4,5-dihydroxybenzylalcohol [8] |
4.7 | 25 b | 4-bromo-2,3-dihydroxy-6-hydroxymethylphenyl 2,5-dibromo-6-hydroxy-3-hydroxy-methylphenyl ether [11] |
4.8 | 11 b | 2,3,6-tribromo-4,5-dihydroxybenzylalcohol [10] |
4.9 | 89 b | 2,3-dibromo-4,5-dihydroxybenzylalcohol [11] |
4.10 | 110.4 b | 2,4-dibromophenol [7] |
4.11 | 60.3 b | 2,4,6-tribromophenol [7] |
4.12 | 0.11 c | 2,2′,3,6,6′-pentabromo-3′,4,4′,5-tetrahydroxydibenzyl ether [31] |
4.13 | 0.4 c | Bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane [31] |
4.14 | 0.4 c | 2,2′,3,5′,6-pentabromo-3′,4,4′,5-tetrahydroxydiphenylmethane [31] |
4.15 | 1.15 c | 2,3,6-tribromo-4,5-dihydroxymethylbenzene [31] |
4.16 | 0.25 c | 2,3,6-tribromo-4,5-dihydroxybenzaldehyde [31] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, M.; Hansen, P.E.; Lin, X. Bromophenols in Marine Algae and Their Bioactivities. Mar. Drugs 2011, 9, 1273-1292. https://doi.org/10.3390/md9071273
Liu M, Hansen PE, Lin X. Bromophenols in Marine Algae and Their Bioactivities. Marine Drugs. 2011; 9(7):1273-1292. https://doi.org/10.3390/md9071273
Chicago/Turabian StyleLiu, Ming, Poul Erik Hansen, and Xiukun Lin. 2011. "Bromophenols in Marine Algae and Their Bioactivities" Marine Drugs 9, no. 7: 1273-1292. https://doi.org/10.3390/md9071273
APA StyleLiu, M., Hansen, P. E., & Lin, X. (2011). Bromophenols in Marine Algae and Their Bioactivities. Marine Drugs, 9(7), 1273-1292. https://doi.org/10.3390/md9071273