Next Article in Journal
Food Fortification and Decline in the Prevalence of Neural Tube Defects: Does Public Intervention Reduce the Socioeconomic Gap in Prevalence?
Previous Article in Journal
Do Quiet Areas Afford Greater Health-Related Quality of Life than Noisy Areas?
Previous Article in Special Issue
Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment
Article Menu

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2013, 10(4), 1304-1311; doi:10.3390/ijerph10041304

Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes

1
Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
2
Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
3
Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
4
Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
*
Author to whom correspondence should be addressed.
Received: 24 January 2013 / Revised: 13 March 2013 / Accepted: 20 March 2013 / Published: 28 March 2013
(This article belongs to the Special Issue Mass Spectrometry and Environmental Analysis)
View Full-Text   |   Download PDF [221 KB, uploaded 19 June 2014]   |  

Abstract

In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes.
Keywords: ion exchange chromatography; mass spectrometry; MALDI-TOF; phytochelatin; cadmium; intramolecular complex ion exchange chromatography; mass spectrometry; MALDI-TOF; phytochelatin; cadmium; intramolecular complex
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Rodrigo, M.A.M.; Cernei, N.; Kominkova, M.; Zitka, O.; Beklova, M.; Zehnalek, J.; Kizek, R.; Adam, V. Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes. Int. J. Environ. Res. Public Health 2013, 10, 1304-1311.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top