Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)
Abstract
:1. Introduction
2. Methods
2.1. NEXUS Design
2.2. AER Model Overview
2.3. LBL Leakage Model
2.4. LBLX Leakage and Natural Ventilation Model
2.5. Parameters for Aleak and Cross Validation
2.6. Model Evaluation Metrics
3. Results
3.1. Model Evaluation
Season: Year 1 or Road Type Classification of Home | Number of Homes | Number of Days Windows Opened 2 | Air Exchange Rates (h−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size | Mean | SD | Min | p5 | p10 | p25 | p50 | p75 | p90 | p95 | Max | |||
Fall 2010 | 24 | 19 (16%) | 119 | 0.74 | 0.56 | 0.09 | 0.12 | 0.17 | 0.41 | 0.63 | 0.97 | 1.21 | 1.69 | 3.48 |
Spring 2011 | 17 | 9 (12%) | 78 | 0.83 | 0.48 | 0.25 | 0.32 | 0.35 | 0.45 | 0.67 | 1.06 | 1.66 | 1.81 | 2.05 |
HTHD 3 | 7 | 12 (22%) | 55 | 1.00 | 0.73 | 0.11 | 0.14 | 0.39 | 0.53 | 0.79 | 1.17 | 2.01 | 2.70 | 3.48 |
HTLD 3 | 5 | 2 (5%) | 44 | 0.65 | 0.41 | 0.09 | 0.13 | 0.16 | 0.35 | 0.49 | 0.96 | 1.18 | 1.52 | 1.82 |
LTLD 3 | 12 | 14 (14%) | 98 | 0.70 | 0.39 | 0.09 | 0.20 | 0.25 | 0.43 | 0.64 | 0.91 | 1.23 | 1.51 | 1.80 |
All | 24 | 28 (14%) | 197 | 0.77 | 0.53 | 0.09 | 0.16 | 0.25 | 0.42 | 0.64 | 0.99 | 1.43 | 1.81 | 3.48 |
House-Type | Parameter 1 | Description | Estimate (95% CI) |
---|---|---|---|
Low-income | β0 | Intercept | 6.55 × 101 (2.90 × 101, 1.02 × 102) |
β1 | Year built | −3.40 × 10−2 (−5.29 × 10−2, −1.51 × 10−2) | |
β2 | Floor area | −7.33 × 10−4 (−9.34 × 10−3, 7.88 × 10−3) | |
Conventional | β0 | Intercept | 5.69 × 101 (1.77 × 101, 9.62 × 101) |
β1 | Year built | −2.91 × 10−2 (−4.91 × 10−2, −9.07 × 10−3) | |
β2 | Floor area | −5.65 × 10−3 (−1.39 × 10−2, 2.58 × 10−3) |
House-Type | Parameter 1 | Description | Value |
---|---|---|---|
Low-income | β0 | Intercept | 11.1 |
β1 | Year built | −5.37 × 10−3 | |
β2 | Floor area | −4.18 × 10−3 | |
Conventional | β0 | Intercept | 20.7 |
β1 | Year built | −1.07 × 10−2 | |
β2 | Floor area | −2.20 × 10−3 |
3.2. Model Predictions for NEXUS
4. Discussion
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Integrated Science Assessment for Particulate Matter (Final Report); United States Environmental Protection Agency: Washington, DC, USA, 2009.
- HEI Panel on the Health Effects of Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; Health Effects Institute: Boston, MA, USA, 2010.
- National Research Council. Epidemiology and Air Pollution; The National Academies Press: Washington, DC, USA, 1985. [Google Scholar]
- Sheppard, L.; Burnett, R.T.; Szpiro, A.A.; Kim, S.Y.; Jerrett, M.; Pope, C.A., III; Brunekreef, B. Confounding and exposure measurement error in air pollution epidemiology. Air. Qual. Atmos. Health 2012, 5, 203–216. [Google Scholar] [CrossRef]
- Vette, A.; Burke, J.; Norris, G.; Landis, M.; Batterman, S.; Breen, M.; Isakov, V.V.; Lewis, T.; Gilmour, M.; Kamal, A.; et al. The near-road exposures and effects of urban air pollutants study (NEXUS): Study design and methods. Sci. Total. Environ. 2013, 448, 38–47. [Google Scholar]
- Breen, M.S.; Long, T.C.; Schultz, B.D.; Crooks, J.; Breen, M.; Langstaff, J.E.; Isaacs, K.K.; Tan, Y.M.; Williams, R.W.; Cao, Y.; et al. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 412–420. [Google Scholar] [CrossRef]
- Breen, M.S.; Breen, M.; Williams, R.W.; Schultz, B.D. Predicting residential air exchange rates from questionnaires and meteorology: Model evaluation in central North Carolina. Environ. Sci. Technol. 2010, 44, 9349–9356. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Exposure Model for Individuals (EMI). Available online: http://www.epa.gov/heasd/emi (accessed on 1 August 2014).
- Sarnat, J.A.; Sarnat, S.E.; Flanders, W.D.; Chang, H.H.; Mulholland, J.; Baxter, L.K.; Isakov, V.; Ozkaynak, H. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 606–615. [Google Scholar] [CrossRef]
- Hodas, N.; Turpin, B.J.; Lunden, M.M.; Baxter, L.K.; Ozkaynak, H.; Burke, J.; Ohman-Strickland, P.; Thevenet-Morrison, K.; Kostis, J.B.; Rich, D.Q. Refined ambient PM2.5 exposure surrogates and the risk of myocardial infarction. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 573–580. [Google Scholar] [CrossRef]
- Breen, M.S.; Schultz, B.D.; Sohn, M.D.; Long, T.; Langstaff, J.; Williams, R.; Isaacs, K.; Meng, Q.Y.; Stallings, C.; Smith, L. A review of air exchange rate models for air pollution exposure assessments. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Spector, D.; Colome, S.; Turpin, B. Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study. Atmos. Environ. 2009, 43, 5750–5758. [Google Scholar] [CrossRef]
- Allen, R.W.; Adar, S.D.; Avol, E.; Cohen, M.; Curl, C.L.; Larson, T.; Liu, L.J.; Sheppard, L.; Kaufman, J.D. Modeling the residential infiltration of outdoor PM2.5 in the multi-ethnic study of atherosclerosis and air pollution (MESA Air). Environ. Health Perspect. 2012, 120, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.; Williams, R.; Suggs, J.; Jones, P. Estimating Contributions of Outdoor Fine Particles to Indoor Concentrations and Personal Exposures: Effects of Household Characteristics and Personal Activities; United States Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- Ekberg, L.E. Relationship between indoor and outdoor contaminants in mechanically ventilated buildings. Indoor Air 1996, 6, 41–47. [Google Scholar] [CrossRef]
- Chan, W.R.; Nazaroff, W.W.; Price, P.N.; Gadgil, A.J. Effectiveness of urban shelter-in-place-I: Idealized conditions. Atmos. Environ. 2007, 41, 4962–4976. [Google Scholar] [CrossRef]
- Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Final Report); United States Environmental Protection Agency: Washington, DC, USA, 2013.
- Integrated Science Assessment for Carbon Monoxide (Final Report); United States Environmental Protection Agency: Washington, DC, USA, 2010.
- American Society of Heating, Refrigerating, and Air Conditioning Engineers. The 2009 ASHRAE Handbook-Fundamentals; American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE): Atlanta, GA, 2009.
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s about time: a comparison of Canadian and American time-activity patterns. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.H.; Grimsrud, D.T. Infiltration-pressurization correlation: Simplified physical modeling. ASHRAE Trans. 1980, 86, 778–807. [Google Scholar]
- Dietz, R.N.; Goodrich, R.W.; Cote, E.A.; Wieser, R.F. Detailed Description and Performance of A Passive Perfluorocarbon Tracer System for Building Ventilation and Air Exchange Measurements, Measured Air Leakage of Buildings; Trechsel, H.R., Lagus, P.L., Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 1986; pp. 203–264. [Google Scholar]
- Dietz, R.N.; Cote, E.A. Air infiltration measurements in a home using a convenient perfluorocarbon tracer technique. Environ. Int. 1982, 8, 419–433. [Google Scholar] [CrossRef]
- Williams, R.; Rea, A.; Vette, A.; Croghan, C.; Whitaker, D.; Stevens, C.; McDow, S.; Fortmann, R.; Sheldon, L.; Wilson, H.; et al. The design and field implementation of the Detroit exposure and aerosol research study. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 643–659. [Google Scholar] [CrossRef]
- Sherman, M.; Wilson, D. Relating actual and effective ventilation in determining indoor air quality. Bldg. Environ. 1986, 21, 135–144. [Google Scholar] [CrossRef]
- Chan, W.R.; Nazaroff, W.W.; Price, P.N.; Sohn, M.D.; Gadgil, A.J. Analyzing a database of residential air leakage in the United States. Atmos. Environ. 2005, 39, 3445–3455. [Google Scholar] [CrossRef]
- Efron, B. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika 1981, 68, 589–599. [Google Scholar] [CrossRef]
- Efron, B.; Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Statist. 1983, 37, 36–48. [Google Scholar]
- Miller, R.G. The jackknife—A review. Biometrika 1974, 61, 1–15. [Google Scholar]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Calculating correlation coefficients with repeated observations: Part 2—Correlation between subjects. BMJ 1995, 310. [Google Scholar] [CrossRef]
- Szpiro, A.A.; Paciorek, C.J. Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics 2013, 24, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Szpiro, A.A.; Paciorek, C.J.; Sheppard, L. Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology 2011, 22, 680–685. [Google Scholar] [CrossRef]
- Palmiter, L.; Francisco, P.W. Modeled and Measured Infiltration Phase III: A Detailed Case Study of Three Homes (Technical Report); Ecotope Inc.: Seattle, WA, USA, 1996. [Google Scholar]
- Wang, W.; Beausoleil-Morrison, I.; Reardon, J. Evaluation of the Alberta air infiltration model using measurements and inter-model comparisons. Bldg. Environ. 2009, 44, 309–318. [Google Scholar] [CrossRef]
- Koenig, J.Q.; Mar, T.F.; Allen, R.W.; Jansen, K.; Lumley, T.; Sullivan, J.H.; Trenga, C.A.; Larson, T.; Liu, L.J. Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ. Health Perspect. 2005, 113, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Persily, A.; Musser, A.; Emmerich, S. Modeled infiltration rate distributions for U.S. housing. Indoor Air 2010, 20, 473–485. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breen, M.S.; Burke, J.M.; Batterman, S.A.; Vette, A.F.; Godwin, C.; Croghan, C.W.; Schultz, B.D.; Long, T.C. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS). Int. J. Environ. Res. Public Health 2014, 11, 11481-11504. https://doi.org/10.3390/ijerph111111481
Breen MS, Burke JM, Batterman SA, Vette AF, Godwin C, Croghan CW, Schultz BD, Long TC. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS). International Journal of Environmental Research and Public Health. 2014; 11(11):11481-11504. https://doi.org/10.3390/ijerph111111481
Chicago/Turabian StyleBreen, Michael S., Janet M. Burke, Stuart A. Batterman, Alan F. Vette, Christopher Godwin, Carry W. Croghan, Bradley D. Schultz, and Thomas C. Long. 2014. "Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)" International Journal of Environmental Research and Public Health 11, no. 11: 11481-11504. https://doi.org/10.3390/ijerph111111481
APA StyleBreen, M. S., Burke, J. M., Batterman, S. A., Vette, A. F., Godwin, C., Croghan, C. W., Schultz, B. D., & Long, T. C. (2014). Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS). International Journal of Environmental Research and Public Health, 11(11), 11481-11504. https://doi.org/10.3390/ijerph111111481