Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change
Abstract
:1. Introduction
2. Sources, Fate and Behavior of Microorganisms in Water
2.1. Fate in Sediments and in Submerged Aquatic Vegetation
2.2. Transport and Fate of Microorganisms
2.3. Influence of Hydrometeorological Conditions
Type of pathogens | Matrix | Water Body | References | Comments |
---|---|---|---|---|
Bacteria | Particles | Karstic aquifer | [67] | Connections with the surface responsible for turbid and bacterial contaminations |
Bacteria groups | Colloids | Groundwater | [46] | Modelisation of transport mechanisms of the combined system (contaminant–colloids–bacteria) |
Lakes | [47] | Correlation between size particles and transport and distribution after a storm | ||
Recreational waters | [66] | Connection between microbial tracers and fecal indicator organisms | ||
E. coli, Enterococci | Particles | Run-off | [68] | Rainfall simulations for erodible soil particles and sparsely vegetable soils |
[45] | run-off | |||
E. coli | Sediments | Rivers | [41] | Modelisation of bacteria transport during rainfall events |
Virus Norovirus | Colloids | Rivers | [69] | Direct spillage of wastewater in river during heavy rains |
Mixture | Colloids | Distributed water | [3] | Correlation of heavy rains with gastroenteritis epidemics |
Particles | River, karstic water | [17] | Correlation of turbidity, flow rate and gastroenteritis epidemics | |
Others Giardia cyst Protozoan parasites groups | Colloids | Rivers | [70] | Correlation with rainy events |
Particles | Waterbeds soils | [52] | Interaction between parasites and particles (organic and inorganic) |
3. Optical Monitoring of Microbial Contamination: Current Methods, Trends and Needs
3.1. Current Trends: Turbidity, Particle Size Distribution (PSD) and Cytometry
3.2. Trends in Optical Methods
3.2.1. Fluorescence Measurements
3.2.2. Biosensors
3.2.3. Spectrophotometric Methods
References | Optical domains | Measurement/study | Particle size (µm) | Suspended matter concentration (mg/L) |
---|---|---|---|---|
[98] | Visible and near-infrared spectral regions | Relationships between the concentration, composition and size of suspended particles | 2.72–460 | 0–90 |
[106] | UV spectrophotometry and laser granulometry | Characterization of heterogeneous suspensions | 0.4–2 × 103 | 100–670 |
[107] | Coupling UV-spectrophotometry and laser granulometry | Heterogeneous suspensions, quantitative approach (size and concentration) | 0.05–103 | 10–350 |
[108] | UV spectrophotometry | Study of the impact of mechanical treatments on wastewater solids by UV spectrophotometry | 10−3–103 | 10–220 |
[109] | UV spectrophotometry and laser granulometry | Study of UV–vis responses of mineral suspensions in water | 1–100 | 10–250 |
4. Conclusions
Parameter/References | Kind of media/applications fields/pathogens | Influencing parameters for the studies/interferences | Particle size/Number of celldetected |
---|---|---|---|
Turbidity/[7]–[72,73,74,75,76,77,78,79,80] | Natural and wastewaters | Plankton, Humic substances | 10–103 µm |
PSD/[3,84] | Karstic waters | Hydroclimatical | 0.9–1.5 µm |
Cytometry/[85,86] | All fluorescent species | Others fluorescent species (e.g., humic-like substances) + light scattering | From virus to bacteria/107 colony forming unit/mL |
Fluorescence, Bacteriophage life cycle/[87,88,89,90,91,92,93] | River waters (tyrosine, tryptophan and fulvic-like substances, E. Coli, Vibrio fischeri | Light-scattering, inner filters effects, bioluminescence interferences | From molecule to bacteria |
Biosensors/[94,95,96] | Environment, food process, military | Interfering enzyme reactions | Virus to protozoan> 100 cells/mL |
Spectrophotometry Methods/[97,98,99,100,101,102,103,104,105,106,107,108,109] | Virus, bacteria, cyanobacteria, nanoplanktonic and chlorophytes diatoms | Light scattering | 10−3–2 × 103 µm |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hlavsa, M.C.; Roberts, V.A.; Anderson, A.R.; Hill, V.R.; Kahler, A.M.; Orr, M.; Garrison, L.E.; Hicks, L.A.; Newton, A.; Hilborn, E.D.; et al. Surveillance for waterborne disease outbreaks and other health events associated with drinking water—United States, 2007–2008. MMWR Surveill. Summ. 2011, 60, 1–32. [Google Scholar]
- Auld, H.; MacIver, D.; Klaassen, J. Heavy rainfall and waterborne disease outbreaks: The Walkerton example. J. Toxicol. Environ. Health. A 2004, 67, 1879–1887. [Google Scholar]
- Curriero, F.C.; Patz, J.A.; Rose, J.B.; Lele, S. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994. Am. J. Public Health 2001, 91, 1194–1199. [Google Scholar] [CrossRef]
- Hunter, P.R. Climate change and waterborne and vector-borne disease. J. Appl. Microbiol. 2003, 94, 37S–46S. [Google Scholar] [CrossRef]
- Bouzid, M.; Hooper, L.; Hunter, P.R. The effectiveness of public health interventions to reduce the health impact of climate change: A systematic review of systematic reviews. PLoS One 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, B.G.; Craun, G.F.; Yoder, J.S.; Hill, V.; Calderon, R.L.; Chen, N.; Lee, S.H.; Levy, D.A.; Beach, M.J. Surveillance for waterborne-disease outbreaks associated with drinking water—United States, 2001–2002. MMWR 2004, 53, 23–45. [Google Scholar]
- Pitkänen, T.; Karinen, P.; Miettinen, I.T.; Lettojärvi, H.; Heikkilä, A.; Maunula, R.; Aula, V.; Kuronen, H.; Vepsäläinen, A.; Nousiainen, L.-L.; et al. Microbial contamination of groundwater at small community water supplies in Finland. Ambio 2010, 40, 377–390. [Google Scholar]
- Risebro, H.L.; Breton, L.; Aird, H.; Hooper, A.; Hunter, P.R. Contaminated small drinking water supplies and risk of infectious intestinal disease: A prospective cohort study. PLoS One 2012, 7. [Google Scholar] [CrossRef]
- Rutter, M.; Nichols, G.L.; Swan, A.; De Louvois, J. A survey of the microbiological quality of private water supplies in England. Epidemiol. Infect. 2000, 124, 417–425. [Google Scholar] [CrossRef]
- Said, B.; Wright, F.; Nichols, G.L.; Reacher, M.; Rutter, M. Outbreaks of infectious disease associated with private drinking water supplies in England and Wales 1970–2000. Epidemiol. Infect. 2003, 130, 469–479. [Google Scholar]
- Kay, D.; Watkins, J.; Francis, C.A.; Wyn-Jones, A.P.; Stapleton, C.M.; Fewtrell, L.; Wyer, M.D.; Drury, D. The microbiological quality of seven large commercial private water supplies in the United Kingdom. J. Water Health 2007, 5, 523–538. [Google Scholar] [CrossRef]
- Bartram, J.; Corrales, L.; Davison, A.; Deere, D.; Drury, D.; Gordon, B.; Rinehold, A.; Stevens, M. Water Safety Plan Manual: Step-by-Step Risk Management for Drinking-Water Suppliers; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat: Geneva, Switzerland, 2008; pp. 1–210. [Google Scholar]
- Hundesa, A.; Maluquer de Motes, C.; Bofill-Mas, S.; Binana-Gimenez, N.; Girones, R. Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl. Environ. Microbiol. 2006, 72, 7886–7893. [Google Scholar] [CrossRef]
- Poma, H.R.; Gutiérrez Cacciabue, D.; Garcé, B.; Gonzo, E.E.; Rajal, V.B. Towards a rational strategy for monitoring of microbiological quality of ambient waters. Sci. Total Environ. 2012, 433, 98–109. [Google Scholar] [CrossRef]
- Beaudeau, P.; Valdes, D.; Damien, M.; Stemfelet, M.; Seux, R. Natural and technical factors in faecal contamination incidents of drinking water in small distribution networks, France, 2003–2004: A geographical study. J. Water Health 2010, 8, 20–33. [Google Scholar] [CrossRef]
- Beaudeau, P.; Rambaud, L.; Galey, C.; le Tertre, A.; Zeghoun, A. Risque D’infections Sporadiques Lié à L’ingestion D’eau Du Robinet: L’émergence D’une Approche Epidémiologique. In Proceeding of Second National Congress Société Française Santé Environnement (SFSE), Paris, France, 14–15 December 2011.
- Badgley, B.D.; Nayak, B.S.; Harwood, V.J. The importance of sediment and submerged aquatic vegetation as potential habitats for persistent strains of Enterococci in a subtropical watershed. Water Res. 2010, 44, 5857–5866. [Google Scholar] [CrossRef]
- Meays, C.L.; Broersma, K.; Nordin, R.; Mazumder, A. Source tracking fecal bacteria in water: A critical review of current methods. J. Environ. Manag. 2004, 73, 71–79. [Google Scholar] [CrossRef]
- Blanch, A.R.; Belanche-Munoz, L.; Bonjoch, X.; Ebdon, J.; Gantzer, C.; Lucena, F. Tracking the origin of faecal pollution in surface water: An ongoing project within the European Union Research Programme. J. Water Health 2004, 2, 249–260. [Google Scholar]
- Field, K.G.; Samadpour, M. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 2007, 41, 3517–3538. [Google Scholar] [CrossRef]
- Gourmelon, M.; Caprais, M.P.; Mieszkin, S.; Marti, R.; Wéry, N.; Jardé, E.; Derrien, M.; Jadas-Hécart, A.; Communal, P.Y.; Jaffrezic, A.; et al. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res. 2010, 44, 4812–4824. [Google Scholar] [CrossRef] [Green Version]
- Furtula, V.; Osachoff, H.; Derksen, G.; Juahir, H.; Colodey, A.; Chambers, P. Inorganic nitrogen, sterols and bacterial source tracking as tools to characterize water quality and possible contamination sources in surface water. Water Res. 2012, 46, 1079–1092. [Google Scholar] [CrossRef]
- Mesquita, S.; Noble, R.T. Recent Developments in Monitoring of Microbiological Indicators of Water Quality across a Range of Water Types. In Water Resources Planning, Development and Management; Wurbs, R., Ed.; Texas A&M University: College Station, TX, USA, 2013; Chapter 2. [Google Scholar]
- Plummer, J.D.; Long, S.C. Monitoring source water for microbial contamination: Evaluation of water quality measures. Water Res. 2007, 41, 3716–3728. [Google Scholar] [CrossRef]
- Edge, T.A.; Hill, S.; Seto, P.; Marasalek, J. Library-dependent and library-independent microbial source tracking to identify spatial variation in faecal contamination sources along a lake Ontario beach (Ontario, Canada). Water Sci. Technol. 2010, 62, 719–727. [Google Scholar] [CrossRef]
- Kortbaoui, R.; Locas, A.; Imbeau, M.; Payment, P.; Villemur, R. Universal mitochondrial PCR combined with species-specific dot-blot assay as a source-tracking method of human, bovine, chicken, ovine, and porcine in fecal-contaminated surface water. Water Res. 2009, 43, 2002–2010. [Google Scholar] [CrossRef]
- Lyautey, E.; Lu, Z.; Lapen, D.R.; Berkers, T.E.; Edge, T.A.; Topp, E. Optimization and validation of rep-PCR genotypic libraries for microbial source tracking of environmental Escherichia coli isolates. Can. J. Microbiol. 2010, 56, 651–659. [Google Scholar] [CrossRef]
- Lee, D.Y.; Weir, S.C.; Lee, H.; Trevors, J.T. Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteriodales 16S rRNA genetic markers. Appl. Microbiol. Biotechnol. 2010, 88, 1373–1383. [Google Scholar] [CrossRef]
- Staley, C.; Reckhow, K.H; Lukasik, J.; Harwood, V.J. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake. Water Res. 2012, 46, 5799–5812. [Google Scholar] [CrossRef]
- Marsalek, J.; Rochfort, Q.J. Urban wet-weather flows: Sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. J. Toxicol. Environ. Health A. 2004, 6, 1765–1777. [Google Scholar] [CrossRef]
- Selvakumar, A.; Borst, M.J. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons. J. Water Health 2006, 4, 109–124. [Google Scholar]
- Dechesne, M.; Soyeux, E.; Loret, J.F.; Westrell, T.; Stenström, T.A.; Gornik, V.; Koch, C.; Exner, M.; Stanger, M.; Agutter, P.; et al. Pathogens in Source Water, Microbiological Risk Assessment: A Scientific Basis for Managing Drinking Water Safety from Source to Tap; Microrisk European Project: Nieuwegein, The Netherlands, 2006; pp. 1–42. [Google Scholar]
- Ferguson, C.M.; Charles, K.; Deere, D.D. Quantification of microbial sources in drinking-water catchments. Crit. Rev. Environ. Sci. Technol. 2008, 39, 1–40. [Google Scholar] [CrossRef]
- Harmel, R.D.; Karthikeyan Gentry, R.; Srinivasan, T.R. Effects of agricultural management, land use and watershed scale on E.coli concentrations in runoff and stream flow. Trans. ASABE 2010, 53, 1833–1841. [Google Scholar] [CrossRef]
- James, E.; Joyce, M. Assessment and management of watershed microbial contaminants. Crit. Rev. Environ. Sci. Technol. 2004, 34, 109–139. [Google Scholar] [CrossRef]
- George, I.; Anzil, A.; Servais, P. Quantification of fecal coliform inputs to aquatic systems through soil leaching. Water Res. 2004, 38, 611–618. [Google Scholar] [CrossRef]
- Gao, G.; Falconer, R.A.; Lin, B. Numerical modelling of sediment bacteria interaction processes in surface waters. Water Res. 2011, 45, 1951–1960. [Google Scholar] [CrossRef]
- Garzio-Hadzick, A.; Shelton, D.R.; Hill, R.L.; Pachepsky, Y.A.; Guber, A.K.; Rowland, R. Survival of manure-borne E. coli in streambed sediment: Effects of temperature and sediment properties. Water Res. 2010, 44, 2753–2762. [Google Scholar] [CrossRef]
- Chandran, A.; Varghese, S.; Kandeler, E.; Thomas, A.; Hatha, M.; Mazumder, A. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. Int. J. Hyg. Environ. Health 2011, 214, 258–264. [Google Scholar] [CrossRef]
- Cho, K.H.; Pachepsky, Y.A.; Kim, J.H.; Guber, A.K.; Shelton, D.R.; Rowland, R. Release of Escherichia coli from the bottom sediment in a first-order creek: Experiment and reach-specific modeling. J. Hydrol. 2010, 391, 322–332. [Google Scholar] [CrossRef]
- Jamieson, R.; Joy, D.M.; Lee, H.; Kostaschuk, R.; Gordon, R. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res. 2005, 39, 2665–2675. [Google Scholar] [CrossRef]
- Muirhead, R.W.; Collins, R.P.; Bremer, P.J. Interaction of Escherichia coli and soil particles in runoff. Appl. Environ. Microbiol. 2006, 72, 3406–3411. [Google Scholar] [CrossRef]
- Loveland, J.P.; Ryan, J.N.; Amy, G.L.; Harvey, R.W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A 1996, 107, 205–221. [Google Scholar] [CrossRef]
- Soupir, M.L.; Mostaghimi, S. Escherichia coli and Enterococci attachment to particles in runoff from highly and sparsely vegetated grassland. Wat. Air Soil Poll. 2011, 216, 167–178. [Google Scholar] [CrossRef]
- Bekhit, H.M.; El-Hordy, M.A.; Hassan, A.E. Contaminant transport in groundwater in the presence of colloids and bacteria: Model development and verification. J. Contam. Hydrol. 2009, 108, 152–167. [Google Scholar] [CrossRef]
- Brookes, J.D.; Antenucci, J.; Hipsey, M.; Burch, M.D.; Ashbolt, N.J.; Fergusson, C. Fate and transport of pathogens in lakes and reservoirs. Environ. Int. 2004, 30, 741–759. [Google Scholar]
- Garcia-Armisen, T.; Servais, P. Partitioning and fate of particle-associated E. coli in river waters. Water Environ. Res. 2009, 81, 21–28. [Google Scholar]
- Gutierrez, L.; Nguyen, T.H. Interactions between rotavirus and Suwannee River organic matter: Aggregation, deposition, and adhesion force measurement. Environ. Sci. Technol. 2012, 21, 8705–8713. [Google Scholar] [CrossRef]
- Abudalo, R.A.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Landkamer, L. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium. Water Res. 2010, 44, 1104–1113. [Google Scholar] [CrossRef]
- Searcy, K.E.; Packman, A.I.; Atwill, E.R.; Harter, T. Association of Cryptosporidium parvum with suspended particles: Impact on oocyst sedimentation. Appl. Environ. Microbiol. 2005, 71, 1072–1078. [Google Scholar] [CrossRef]
- Dumètre, A.; Aubert, D.; Puech, P.H.; Hohweyer, J.; Azas, N.; Villena, I. Interaction forces drive the environmental transmission of pathogenic protozoa. Appl. Environ. Microbiol. 2012, 78, 905–912. [Google Scholar] [CrossRef]
- Auer, M.T; Niehaus, S.L. Modeling fecal-coliform bacteria. 1. Field and laboratory determination of loss kinetics. Water Res. 1993, 27, 693–701. [Google Scholar] [CrossRef]
- Ferguson, C.; Husman, A.M.D.; Altavilla, N.; Deere, D.; Ashbolt, N. Fate and transport of surface water pathogens in watersheds. Crit. Rev. Environ. Sci. Technol. 2003, 33, 299–361. [Google Scholar] [CrossRef]
- Sinton, L.W.; Finlay, R.K.; Lynch, P.A. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl. Environ. Microbiol. 1999, 65, 3605–3613. [Google Scholar]
- Noble, R.; Lee, I.; Schiff, K. Inactivation of indicator microorganisms from various sources of faecal contamination in seawater and freshwater. J. Appl. Microbiol. 2004, 96, 464–472. [Google Scholar] [CrossRef]
- Gronewold, A.D.; Myers, L.; Swall, J.L.; Noble, R.T. Addressing uncertainty in fecal indicator bacteria dark inactivation rates. Water Res. 2011, 45, 652–664. [Google Scholar] [CrossRef]
- Delpla, I.; Baures, E.; Jung, A.-V.; Thomas, O. Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Sci. Total Environ. 2011, 409, 1683–1688. [Google Scholar]
- Hata, A.; Katayama, H.; Kojima, K.; Sano, S.; Kasuga, I.; Kitajima, M.; Furumai, H. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows. Sci. Total Environ. 2013, 468, 757–763. [Google Scholar]
- McBride, G.B.; Stott, R.; Miller, W.; Bambic, D.; Wuertz, S. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res. 2013, 47, 5282–5297. [Google Scholar] [CrossRef]
- Beaudeau, P. Impact Sanitaire D’un Accident Sur le Réseau D’adduction en eau Potable du Havre, D’une Panne De Désinfection à FECAMP et de 4 Episodes de Turbidité Dans Des Secteurs Ruraux (Seine-Maritime, 1998). Rapport de la Direction Départementale des Affaires Sanitaires et Sociales de Seine-Maritime et du Laboratoire D’études et D’analyses de la Ville du Havre; Report for the Social and Sanitary Departmental Direction (Seine-Maritime) and the studies and analyses Laboratory (Havre): Havre, MT, USA, 1999. [Google Scholar]
- Beaudeau, P.; de Valk, H.; Vaillant, V.; Mannschott, C.; Tillier, C.; Mouly, D.; Ledrans, M. Lessons learned from ten investigations of waterborne gastroenteritis outbreaks, France, 1998–2006. J. Water Health 2008, 6, 491–502. [Google Scholar] [CrossRef]
- Zmirou, D.; Ferley, J.P.; Collin, J.F.; Charrel, M.; Berlin, J. A follow-up study of gastro-intestinal diseases related to bacteriologically substandard drinking water. Am. J. Public Health 1987, 77, 582–584. [Google Scholar] [CrossRef]
- Brookes, J.D.; Hipsey, M.R.; Burch, M.D.; Regel, R.H.; Linden, L.G.; Ferguson, C.M.; Antenucci, J.P. Relative value of surrogate indicators for detecting pathogens in lakes and reservoirs. Environ. Sci. Technol. 2005, 39, 8614–8621. [Google Scholar] [CrossRef]
- Hipsey, M.R.; Antenucci, J.P.; Brookes, J.D.; Burch, M.D.; Regel, R.H.; Davies, C.M.; Ashbolt, N.J.; Ferguson, C. Hydrodynamic of Pathogens in Lakes and Reservoirs; American Water Works Research Foundation: Denver, CO, USA, 2005; Report 91073F. [Google Scholar]
- Wyer, M.D.; Kay, D.; Watkins, J.; Davies, C.; Kay, C.; Thomas, R.; Porter, J.; Stapleton, C.M.; Moore, H. Evaluating short-term changes in recreational water quality during a hydrograph event using a combination of microbial tracers, environmental microbiology, microbial source tracking and hydrological techniques: A case study in Southwest Wales, UK. Water Res. 2011, 44, 4783–4795. [Google Scholar]
- Gargala, G. Evaluation Des Risques Humains et Environnementaux Associés à La Présence de Cryptosporidium Dans L’environnement Hydrique de Haute-Normandie. In Proceeding of Second National Congress Société Française Santé Environnement (SFSE), Paris, France, 14–15 December 2011.
- Soupir, M.L.; Mostaghimi, S.; Dillaha, T. Attachment of Escherichia coli and Enterococci to particles in runoff. J. Environ. Qual. 2010, 39, 1019–1027. [Google Scholar] [CrossRef]
- Tillaut, H.; Encrenaz, N.; Checlair, E.; Alexandre-Bird, A.; Gomes Do Esperito Santo, E.; Beaudeau, P. Epidémie de gastro-entérite, Isère, novembre 2002. Bull. Environ. Hydrol. 2004, 12, 47–48. [Google Scholar]
- Delbec, M.; Chesnot, T.; Mignard, C.; Duchemin, J. Risques Microbiologiques Emergents Pour la Ressource en Eau, Cas de L’agglomération Parisienne. In Proceeding of Second National Congress Société Française Santé Environnement (SFSE), Paris, France, 14–15 December 2011.
- Beaudeau, P.; Pascal, M.; Mouly, D.; Galey, C.; Thomas, O. Health risks associated with drinking water in a context of climate change in France: A review of surveillance requirements. J. Water Clim. Change 2011, 2, 230–246. [Google Scholar] [CrossRef]
- Aumond, M.; Joannis, C. Turbidity Monitoring in Sewage. In Proceeding of 10th International Conference on Urban Drainage, Copenhague, Denmark, 21–26 August 2005.
- Henckens, G.; Veldkamp, R.; Schuit, T. On Monitoring of Turbidity in Sewers. Global Solutions for Urban Drainage. In Proceedings of the Ninth International Conference on Urban Drainage (9ICUD), Portland, OR, USA, 8–13 September 2002.
- Langeveld, J.G.; Veldkamp, R.G.; Clemens, F. Suspended solids transport: An analysis based on turbidity measurements and event based fully calibrated hydrodynamic models. Water Sci. Technol. 2005, 52, 93–101. [Google Scholar]
- Ruban, G.; Bertrand-Krajewski, J.L.; Chebbo, G.; Gromaire, M.C.; Joannis, C. Accuracy and reproducibility of turbidity measurements in urban waste water. Houille Blanche. Revue Internationale de l'Eau 2006, 4, 129–135. [Google Scholar]
- Chebbo, G.; Bachoc, A.; Laplace, D.; Leguennec, B. The transfer of solids in combined sewer networks. Water Sci. Technol. 1995, 31, 95–105. [Google Scholar]
- Deletic, A.B.; Maksimovic, C.T. Evaluation of water quality factors in storm runoff from paved areas. J. Environ. Eng. 1998, 124, 869–879. [Google Scholar] [CrossRef]
- Maréchal, A. Relations Entre Caractéristiques de la Pollution Particulaire et Paramètres Optiques Dans Les Eaux Résiduaires Urbaines. PhD Thesis, Institut national polytechnique de Lorraine, Nancy, France, 2000. [Google Scholar]
- Grüning, H.; Orth, H. Investigations of the dynamic behaviour of the composition of combined sewage using on-line analyzers. Water Sci. Technol. 2002, 45, 77–83. [Google Scholar]
- Pronk, M.; Goldscheider, N.; Zopfi, J. Dynamics and interaction of organic carbon, turbidity and bacteria in a Karst aquifer system. Hydrogeol. J. 2006, 14, 473–484. [Google Scholar] [CrossRef]
- Page, R.M.; Scheidler, S.; Polat, E.; Svoboda, P.; Huggenberger, P. Faecal indicator bacteria: Groundwater dynamics and transport following precipitation and river water infiltration. Water Air Soil Pollut. 2012, 223, 2771–2782. [Google Scholar] [CrossRef]
- Hannouche, A.; Chebbo, G.; Ruban, G.; Tassin, B.; Joannis, C. Relation entre la turbidité et les matières en suspension en réseau d’assainissement unitaire. Techniques Sciences et Méthodes 2011, 10, 42–50. [Google Scholar]
- Goldscheider, N.; Pronk, M.; Zopfi, J. New insights into the transport of sediments and microorganisms in Karst groundwater by continuous monitoring of particle-size distribution. Geol. Croat. 2010, 63, 137–142. [Google Scholar]
- Atteia, O.; Kozel, R. Particle size distributions in waters from a Karstic aquifer: From particles to colloids. J. Hydrol. 1997, 201, 102–119. [Google Scholar] [CrossRef]
- Ferrari, B.C.; Stoner, K.; Bergquist, P.L. Applying fluorescence based technology to the recovery and isolation of Cryptosporidium and Giardia from Industrial wastewater streams. Water Res. 2006, 40, 541–548. [Google Scholar] [CrossRef]
- King, D.N.; Brenner, K.P.; Rodgers, M.R. A critical evaluation of a flow cytometer used for detecting Enterococci in recreational waters. J. Water Health 2007, 5, 295–306. [Google Scholar]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—A review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- Naden, P.S.; Old, G.H.; Eliot-Laize, C.; Granger, S.J.; Hawkins, J.M.B.; Bol, R.; Haygarth, P. Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading in intensively-farmed grasslands. Water Res. 2010, 44, 1701–1712. [Google Scholar]
- Jaffrezic, A.; Jardé, E.; Pourcher, A.M.; Gourmelon, M.; Caprais, M.P.; Heddadj, D.; Cottinet, P.; Bilal, M.; Derrien, M.; Marti, R.; et al. Microbial and chemical markers: Runoff transfer in animal manure-amended soils. J. Environ. Qual. 2011, 40, 959–968. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Kim, M.S.; Chen, Y.-R. A transportable fluorescence imagining system for detecting fecal contaminants. Comput. Electron. Agr. 2005, 48, 63–74. [Google Scholar] [CrossRef]
- Shahid, P.; Venkataraman, C.; Mukherji, S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006, 32, 265–268. [Google Scholar]
- Birmele, M.; Ripp, S.; Jegier, P.; Roberts, M.S.; Sayler, G; Garland, J.L. Characterization and validation of a bioluminescent bioreporter for the direct detection of Escherichia coli. J. Microbiol. Methods 2008, 75, 354–356. [Google Scholar] [CrossRef]
- Connelly, J.T.; Baeumner, A.J. Biosensors for the detection of waterborne pathogens. Anal. Bioanal. Chem. 2012, 402, 117–127. [Google Scholar] [CrossRef]
- Xu, X.; Ying, Y. Microbial biosensors for environmental monitoring and food analysis. Food Rev. Int. 2011, 27, 300–329. [Google Scholar] [CrossRef]
- Pérez-Lopez, B.; Merkoçi, A. Portable Chemical Sensors: Weapons against Bioterrorism. In Biosensors for Safety and Security Applications; Nikolelis, D.P., Ed.; Springer: Berlin, Germany, 2012; pp. 43–61. [Google Scholar]
- Bowers, D.G.; Binding, C.E. The optical properties of mineral suspended particles: A review and synthesis. Estuarine Coastal Shelf Sci. 2006, 67, 1–2. [Google Scholar] [CrossRef]
- Astoreca, R.; Doxaran, D.; Ruddick, K.; Rousseau, V.; Lancelot, C. Influence of suspended particle concentration, composition and size on the variability of inherent optical properties of the Southern North Sea. Continental Shelf Res. 2012, 35, 117–128. [Google Scholar] [CrossRef]
- Stramski, D.; Mobley, C.D. Effects of microbial particles on oceanic optics: A database of single-particle optical properties. Limnol. Oceanography 1997, 42, 538–549. [Google Scholar] [CrossRef]
- Stadler, H.; Klock, E.; Skritek, P.; Mach, R.L.; Zerobin, W.; Farnleitner, A.H. The spectral absorption coefficient at 254nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources. Wat. Sci. Technol. 2010, 62, 1898–1906. [Google Scholar] [CrossRef]
- Thomas, O.; Burgess, C. From Spectra to Qualitative and Quantitative Results. In UV-Visible Spectrophotometry of Water and Wastewater; Thomas, O., Burgess, C., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–360. [Google Scholar]
- Thomas, O.; Mazas, N.; Massiani, C. Determination of biodegradable dissolved organic carbon in waters with the use of UV absorptiometry. Environ. Technol. 1993, 14, 487–493. [Google Scholar] [CrossRef]
- Thomas, O.; El Khorassani, H.; Touraud, E.; Bitar, H. TOC vs. UV spectrophotometry for wastewater quality monitoring. Talanta 1999, 50, 743–749. [Google Scholar] [CrossRef]
- Thomas, O.; Gallot, S. UV multiwavelength absorptiometry (UVMA) for the examination of natural waters and wastewaters. Fresenius J. Anal. Chem. 1990, 338, 234–237. [Google Scholar] [CrossRef]
- Thomas, O.; Theraulaz, F.; Domeizel, M.; Massiani, C. UV spectral deconvolution: A valuable tool for wastewater quality determination. Environ. Technol. 1993, 14, 1187–1192. [Google Scholar] [CrossRef]
- Azema, N.; Pouet, M.-F.; Berho, C.; Thomas, O. Wastewater suspended solids study by optical methods. Colloids Surf. A 2002, 204, 131–140. [Google Scholar] [CrossRef]
- Bayle, S.; Azéma, N.; Berho, C.; Pouet, M.-F.; Lopez-Cuesta, J.-M.; Thomas, O. Study of heterogeneous suspensions: A new quantitative approach coupling laser granulometry and UV-visible spectrophotometry. Colloids Surf. A 2005, 262, 242–250. [Google Scholar] [CrossRef]
- Berho, C.; Pouet, M.-F.; Thomas, O. Study of the impact of mechanical treatments on waste water solids by UV spectrophotometry. Environ. Technol. 2003, 24, 1545–1551. [Google Scholar] [CrossRef]
- Berho, C.; Pouet, M.-F.; Bayle, S.; Azema, N.; Thomas, O. Study of UV-visible responses of mineral suspensions in water. Colloids Surf. A 2004, 248, 9–16. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jung, A.-V.; Le Cann, P.; Roig, B.; Thomas, O.; Baurès, E.; Thomas, M.-F. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change. Int. J. Environ. Res. Public Health 2014, 11, 4292-4310. https://doi.org/10.3390/ijerph110404292
Jung A-V, Le Cann P, Roig B, Thomas O, Baurès E, Thomas M-F. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change. International Journal of Environmental Research and Public Health. 2014; 11(4):4292-4310. https://doi.org/10.3390/ijerph110404292
Chicago/Turabian StyleJung, Aude-Valérie, Pierre Le Cann, Benoit Roig, Olivier Thomas, Estelle Baurès, and Marie-Florence Thomas. 2014. "Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change" International Journal of Environmental Research and Public Health 11, no. 4: 4292-4310. https://doi.org/10.3390/ijerph110404292
APA StyleJung, A. -V., Le Cann, P., Roig, B., Thomas, O., Baurès, E., & Thomas, M. -F. (2014). Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change. International Journal of Environmental Research and Public Health, 11(4), 4292-4310. https://doi.org/10.3390/ijerph110404292