Differences of Urinary Arsenic Metabolites and Methylation Capacity between Individuals with and without Skin Lesions in Inner Mongolia, Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Subjects
2.2. Skin Examination
2.3. Urine Sample Collection and Arsenic Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Differences of Urinary Arsenic Species and Methylation Indices among Subgroups
Variables a | Study Population | Study Population | |
---|---|---|---|
Without Skin Lesions (n = 223) | With Skin Lesions (n = 79) | ||
Arsenic species (μg/g Cr) | |||
iAs | 108.3 ± 138.9 | 95.9 ± 83.7 | 143.4 ± 229.9 |
MMA | 84.4 ± 65.1 | 77.9 ± 65.9 | 103.0 ± 59.5 |
DMA | 320.8 ± 232.8 | 314.2 ± 243.0 | 339.6 ± 201.4 |
tAs | 513.6 ± 362.2 | 487.9 ± 341.2 | 586.0 ± 409.7 |
Arsenic methylation indices | |||
iAs% | 23.7 ± 15.5 | 23.9 ± 16.6 | 22.9 ± 11.8 |
MMA% | 15.5 ± 6.7 | 14.5 ± 6.2 | 18.2 ± 7.2 |
DMA% | 60.9 ± 13.7 | 61.6 ± 13.9 | 58.9 ± 13.1 |
PMI | 0.76 ± 0.15 | 0.76 ± 0.17 | 0.77 ± 0.12 |
SMI | 0.80 ± 0.09 | 0.81 ± 0.07 | 0.76 ± 0.11 |
3.3. Differences of Urinary Arsenic Species between Subjects with and without Skin Lesions
3.4. Differences of Urinary Arsenic Methylation Indices between Subjects with and without Skin Lesions
Variables | n | iAs (μg/g Cr) a | MMA (μg/g Cr) a | DMA (μg/g Cr) a | tAs (μg/g Cr) a | iAs% a | MMA% a | DMA% a | PMI a | SMI a |
---|---|---|---|---|---|---|---|---|---|---|
Sex | ||||||||||
Male | 120 | 98.4 ± 80.8 | 80.6 ± 58.1 | 266.2 ± 191.7 | 445.2 ± 277.1 | 25.5 ± 15.5 | 16.8 ± 7.6 | 57.7 ± 14.0 | 0.75 ± 0.15 | 0.78 ± 0.11 |
Female | 182 | 114.9 ± 166.4 | 87.0 ± 69.4 | 356.8 ± 250.3 | 558.7 ± 403.2 | 22.5 ± 15.4 | 14.6 ± 5.8 | 63.0 ± 13.1 | 0.78 ± 0.15 | 0.81 ± 0.07 |
p-value | 0.425 | 0.578 | 0.006 | 0.029 | 0.042 | 0.183 | 0.039 | 0.455 | 0.039 | |
Age (years) b | ||||||||||
≤51 | 155 | 118.8 ± 180.8 | 72.4 ± 62.5 | 277.5 ± 210.8 | 468.7 ± 376.5 | 27.2 ± 17.7 | 14.3 ± 6.6 | 58.5 ± 14.5 | 0.73 ± 0.18 | 0.81 ± 0.08 |
>51 | 147 | 97.3 ± 71.3 | 97.2 ± 65.7 | 366.5 ± 246.4 | 560.9 ± 341.5 | 19.9 ± 11.7 | 16.7 ± 6.5 | 63.5 ± 12.3 | 0.80 ± 0.12 | 0.79 ± 0.10 |
p-value | 0.657 | <0.001 | 0.003 | 0.010 | <0.001 | 0.001 | 0.054 | <0.001 | 0.145 | |
BMI (kg/m2) | ||||||||||
≤25 | 213 | 105.1 ± 86.2 | 86.1 ± 65.4 | 312.2 ± 210.6 | 503.4 ± 312.6 | 23.6 ± 14.9 | 16.0 ± 6.8 | 60.5 ± 13.3 | 0.76 ± 0.15 | 0.79 ± 0.09 |
>25 | 89 | 116.1 ± 219.2 | 80.4 ± 64.7 | 341.5 ± 278.9 | 538.0 ± 461.1 | 23.8 ± 16.9 | 14.3 ± 6.3 | 61.9 ± 14.5 | 0.76 ± 0.17 | 0.82 ± 0.07 |
p-value | 0.144 | 0.199 | 0.748 | 0.451 | 0.323 | 0.125 | 0.415 | 0.980 | 0.171 | |
Smoking | ||||||||||
Current or former | 107 | 96.5 ± 76.1 | 85.3 ± 64.4 | 296.8 ± 200.5 | 478.6 ± 295.3 | 23.0 ± 14.7 | 16.3 ± 6.6 | 60.7 ± 12.8 | 0.77 ± 0.15 | 0.79 ± 0.08 |
Never | 195 | 114.8 ± 163.3 | 84.0 ± 65.7 | 334.0 ± 248.2 | 532.7 ± 393.6 | 24.0 ± 15.9 | 15.0 ± 6.7 | 61.0 ± 14.2 | 0.76 ± 0.16 | 0.80 ± 0.09 |
p-value | 0.466 | 0.742 | 0.777 | 0.575 | 0.823 | 0.253 | 0.671 | 0.573 | 0.957 | |
Drinking | ||||||||||
Current or former | 68 | 105.0 ± 88.0 | 78.7 ± 65.3 | 258.7 ± 177.6 | 442.4 ± 274.0 | 27.8 ± 17.8 | 15.9 ± 7.0 | 56.3 ± 14.6 | 0.72 ± 0.18 | 0.78 ± 0.08 |
Never | 234 | 109.3 ± 150.7 | 86.1 ± 65.1 | 338.9 ± 243.9 | 534.3 ± 382.1 | 22.5 ± 14.6 | 15.3 ± 6.6 | 62.2 ± 13.1 | 0.78 ± 0.15 | 0.80 ± 0.09 |
p-value | 0.475 | 0.500 | 0.102 | 0.255 | 0.008 | 0.968 | 0.112 | 0.082 | 0.755 |
Characteristics | Study Population | p-value | |
---|---|---|---|
Without Skin Lesions (n = 223) | With Skin Lesions (n = 79) | ||
iAs (μg/g Cr) a | |||
Crude b | 69.7 (62.4, 78.0) | 99.3 (78.7, 114.6) | 0.006 |
Model 1 c | 68.1 (60.7, 76.4) | 95.9 (79.4, 115.6) | 0.003 |
Model 2 d | 68.2 (60.7, 76.7) | 96.4 (79.1, 117.5) | 0.005 |
Model 3 e | 70.6 (61.8, 80.9) | 99.1 (80.5, 121.9) | 0.006 |
MMA (μg/g Cr) a | |||
Crude b | 41.7 (34.7, 50.1) | 79.1 (58.1, 107.7) | 0.001 |
Model 1 c | 40.2 (33.2, 48.6) | 80.2 (58.9, 109.4) | <0.001 |
Model 2 d | 42.5 (35.0, 51.5) | 68.7 (49.8, 95.06) | 0.015 |
Model 3 e | 42.9 (34.4, 53.5) | 69.3 (49.4, 97.3) | 0.016 |
DMA (μg/g Cr) a | |||
Crude b | 208.9 (182.0, 239.9) | 257.0 (204.2, 324.3) | 0.128 |
Model 1 c | 195.9 (170.2, 225.4) | 264.2 (210.4, 331.9) | 0.030 |
Model 2 d | 202.3 (175.4, 233.4) | 238.8 (187.9, 303.4) | 0.261 |
Model 3 e | 206.1 (175.0, 242.7) | 243.8 (189.7, 313.3) | 0.255 |
tAs (μg/g Cr) a | |||
Crude b | 355.6 (317.7, 399.0) | 466.7 (385.5, 564.9) | 0.017 |
Model 1 c | 339.6 (302.0, 381.9) | 476.4 (393.6, 575.4) | 0.003 |
Model 2 d | 348.3 (309.0, 392.6) | 440.6 (361.4, 538.3) | 0.054 |
Model 3 e | 354.0 (309.0, 406.4) | 447.7 (363.1, 552.1) | 0.057 |
Characteristics | Study Population | p-value | |
---|---|---|---|
Without Skin Lesions (n = 223) | With Skin Lesions (n = 79) | ||
iAs% a | |||
Crude b | 19.6 (18.1, 21.2) | 20.4 (17.8, 23.3) | 0.632 |
Model 1 c | 20.0 (18.5, 21.8) | 20.1 (17.6, 23.0) | 0.955 |
Model 2 d | 19.6 (18.0, 21.2) | 21.9 (19.1, 25.1) | 0.190 |
Model 3 e | 20.0 (18.2, 21.9) | 22.1 (19.2, 25.6) | 0.216 |
MMA% a | |||
Crude b | 11.7 (10.5, 13.1) | 16.9 (14.1, 20.3) | 0.001 |
Model 1 c | 11.9 (10.6, 13.3) | 16.9 (14.1, 20.2) | 0.002 |
Model 2 d | 12.2 (10.9, 13.7) | 15.6 (12.9, 18.9) | 0.037 |
Model 3 e | 12.1 (10.6, 13.8) | 15.5 (12.7, 16.9) | 0.036 |
DMA% a | |||
Crude b | 58.8 (55.3, 62.4) | 55.2 (49.9, 61.0) | 0.294 |
Model 1 c | 57.7 (54.3, 61.4) | 55.6 (50.2, 61.4) | 0.525 |
Model 2 d | 58.1 (54.6, 61.9) | 54.2 (48.8, 60.1) | 0.273 |
Model 3 e | 58.2 (54.2, 62.5) | 54.5 (48.8, 60.8) | 0.304 |
PMI a | |||
Crude b | 0.72 (0.69, 0.76) | 0.76 (0.70, 0.82) | 0.322 |
Model 1 c | 0.72 (0.68, 0.76) | 0.76 (0.70, 0.83) | 0.241 |
Model 2 d | 0.73 (0.69, 0.77) | 0.74 (0.68, 0.80) | 0.803 |
Model 3 e | 0.72 (0.68, 0.76) | 0.73 (0.67, 0.80) | 0.754 |
SMI a | |||
Crude b | 0.81 (0.78, 0.84) | 0.73 (0.69, 0.77) | 0.001 |
Model 1 c | 0.80 (0.77, 0.83) | 0.73 (0.69, 0.77) | 0.006 |
Model 2 d | 0.80 (0.77, 0.83) | 0.73 (0.69, 0.78) | 0.024 |
Model 3 e | 0.81 (0.78, 0.84) | 0.74 (0.70, 0.79) | 0.025 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marchiset-Ferlay, N.; Savanovitch, C.; Sauvant-Rochat, M.P. What is the best biomarker to assess arsenic exposure via drinking water? Environ. Int. 2012, 39, 150–171. [Google Scholar] [CrossRef]
- Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef]
- Argos, M.; Kalra, T.; Pierce, B.L.; Chen, Y.; Parvez, F.; Islam, T.; Ahmed, A.; Hasan, R.; Hasan, K.; Sarwar, G.; et al. A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am. J. Epidemiol. 2011, 174, 185–194. [Google Scholar] [CrossRef]
- Guo, X.; Fujino, Y.; Ye, X.; Liu, J.; Yoshimura, T. Japan Inner Mongolia Arsenic Pollution Study Group. Association between multi-level inorganic arsenic exposure from drinking water and skin lesions in China. Int. J. Environ. Res. Public Health 2006, 3, 262–267. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.; Liu, M.; Parvez, F.; Slavkovich, V.; Eunus, M.; Ahmed, A.; Argos, M.; Islam, T.; Rakibuz-Zaman, M.; et al. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ. Health Perspect. 2013, 121, 832–838. [Google Scholar] [CrossRef]
- Fu, S.; Wu, J.; Li, Y.; Liu, Y.; Gao, Y.; Yao, F.; Qiu, C.; Song, L.; Wu, Y.; Liao, Y.; et al. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms. Toxicol. Appl. Pharmacol. 2014, 274, 117–123. [Google Scholar] [CrossRef]
- Tseng, C.H. Arsenic methylation, urinary arsenic metabolites and human diseases: Current perspective. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2007, 25, 1–22. [Google Scholar] [CrossRef]
- Aposhian, H.V.; Aposhian, M.M. Arsenic toxicology: Five questions. Chem. Res. Toxicol. 2006, 19, 1–15. [Google Scholar] [CrossRef]
- Hayakawa, T.; Kobayashi, Y.; Cui, X.; Hirano, S. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 2005, 79, 183–191. [Google Scholar] [CrossRef]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef]
- Petrick, J.S.; Ayala-Fierro, F.; Cullen, W.R.; Carter, D.E.; Aposhian, H.V. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol. Appl. Pharmacol. 2000, 163, 203–207. [Google Scholar] [CrossRef]
- Huang, Y.K.; Tseng, C.H.; Huang, Y.L.; Yang, M.H.; Chen, C.J.; Hsueh, Y.M. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol. Appl. Pharmacol. 2007, 218, 135–142. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Xu, Y.; Wang, Y.; Jin, Y.; Itoh, T.; Yoshida, T.; Sun, G. Arsenic methylation capacity and its correlation with skin lesions induced by contaminated drinking water consumption in residents of chronic arsenicosis area. Environ. Toxicol. 2011, 26, 118–123. [Google Scholar] [CrossRef]
- Melak, D.; Ferreccio, C.; Kalman, D.; Parra, R.; Acevedo, J.; Pérez, L.; Cortés, S.; Smith, A.H.; Yuan, Y.; Liaw, J.; et al. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicol. Appl. Pharmacol. 2014, 274, 225–231. [Google Scholar] [CrossRef]
- Yu, R.C.; Hsu, K.H.; Chen, C.J.; Froines, J.R. Arsenic methylation capacity and skin cancer. Cancer Epidemiol. Biomarkers Prev. 2000, 9, 1259–1262. [Google Scholar]
- Agusa, T.; Iwata, H.; Fujihara, J.; Kunito, T.; Takeshita, H.; Minh, T.B.; Trang, P.T.; Viet, P.H.; Tanabe, S. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol. Appl. Pharmacol. 2009, 236, 131–141. [Google Scholar] [CrossRef]
- Engström, K.S.; Nermell, B.; Concha, G.; Strömberg, U.; Vahter, M.; Broberg, K. Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat. Res. 2009, 667, 4–14. [Google Scholar] [CrossRef]
- Gribble, M.O.; Crainiceanu, C.M.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Zhang, Y.; Silbergeld, E.K.; Guallar, E.; Navas-Acien, A. Body composition and arsenic metabolism: A cross-sectional analysis in the Strong Heart Study. Environ. Health 2013, 12, 107. [Google Scholar] [CrossRef]
- Lindberg, A.L.; Sohel, N.; Rahman, M.; Persson, L.A.; Vahter, M. Impact of smoking and chewing tobacco on arsenic-induced skin lesions. Environ. Health Perspect. 2010, 118, 533–538. [Google Scholar]
- Tseng, C.H. A review on environmental factors regulating arsenic methylation in humans. Toxicol. Appl. Pharmacol. 2009, 235, 338–350. [Google Scholar] [CrossRef]
- Smedley, P.L.; Zhang, M.; Zhang, G.; Luo, Z. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 2003, 18, 1453–1477. [Google Scholar] [CrossRef]
- Sun, G. Arsenic contamination and arsenicosis in China. Toxicol. Appl. Pharmacol. 2004, 198, 268–271. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, F.; Sun, D.; Zhong, Y.; Yu, X.; Li, G.; Lv, X.; Sun, G.; Jin, Y. Comparison of speciated arsenic levels in the liver and brain of mice between arsenate and arsenite exposure at the early life. Environ. Toxicol. 2014, 29, 797–803. [Google Scholar] [CrossRef]
- Sun, G.; Xu, Y.; Li, X.; Jin, Y.; Li, B.; Sun, X. Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environ. Health Perspect. 2007, 115, 648–652. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Zheng, Q.; Zheng, Y.; Wang, H.; Xu, Y.; Li, X.; Sun, G. Joint effects of urinary arsenic methylation capacity with potential modifiers on arsenicosis: A cross-sectional study from an endemic arsenism area in Huhhot Basin, northern China. Environ. Res. 2014, 132, 281–289. [Google Scholar] [CrossRef]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181–182, 211–217. [Google Scholar] [CrossRef]
- Vahter, M. Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol. Lett. 2000, 112–113, 209–217. [Google Scholar] [CrossRef]
- Concha, G.; Nermell, B.; Vahter, M.V. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ. Health Perspect. 1998, 106, 355–359. [Google Scholar] [CrossRef]
- Vahter, M.; Concha, G.; Nermell, B.; Nilsson, R.; Dulout, F.; Natarajan, A.T. A unique metabolism of inorganic arsenic in native Andean women. Eur. J. Pharmacol. 1995, 293, 455–462. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Huang, Y.L.; Huang, C.C.; Wu, W.L.; Chen, H.M.; Yang, M.H.; Lue, L.C.; Chen, C.J. Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J. Toxicol. Environ. Health A 1998, 54, 431–444. [Google Scholar] [CrossRef]
- Engström, K.; Vahter, M.; Mlakar, S.J.; Concha, G.; Nermell, B.; Raqib, R.; Cardozo, A.; Broberg, K. Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environ. Health Perspect. 2011, 119, 182–188. [Google Scholar] [CrossRef]
- Lindberg, A.L.; Rahman, M.; Persson, L.A.; Vahter, M. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol. Appl. Pharmacol. 2008, 230, 9–16. [Google Scholar] [CrossRef]
- Tseng, C.H. Blackfoot disease and arsenic: A never-ending story. J. Environ. Sci. Health C 2005, 23, 55–74. [Google Scholar] [CrossRef]
- Fischer, L.M.; daCosta, K.A.; Kwock, L.; Stewart, P.W.; Lu, T.S.; Stabler, S.P.; Allen, R.H.; Zeisel, S.H. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am. J. Clin. Nutr. 2007, 85, 1275–1285. [Google Scholar]
- Vahter, M.E. Interactions between arsenic-induced toxicity and nutrition in early life. J. Nutr. 2007, 137, 2798–2804. [Google Scholar]
- Chiuve, S.E.; Giovannucci, E.L.; Hankinson, S.E.; Zeisel, S.H.; Dougherty, L.W.; Willett, W.C.; Rimm, E.B. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am. J. Clin. Nutr. 2007, 86, 1073–1081. [Google Scholar]
- Hall, M.N.; Gamble, M.V. Nutritional manipulation of one-carbon metabolism: Effects on arsenic methylation and toxicity. J. Toxicol. 2012, 2012. [Google Scholar] [CrossRef]
- Chowdhury, U.K.; Rahman, M.M.; Sengupta, M.K.; Lodh, D.; Chanda, C.R.; Roy, S.; Quamruzzaman, Q.; Tokunaga, H.; Ando, M.; Chakraborti, D. Pattern of excretion of arsenic compounds [arsenite, arsenate, MMA(V), DMA(V)] in urine of children compared to adults from an arsenic exposed area in Bangladesh. J. Environ. Sci. Heal. A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 87–113. [Google Scholar] [CrossRef]
- Huang, Y.K.; Huang, Y.L.; Hsueh, Y.M.; Yang, M.H.; Wu, M.M.; Chen, S.Y.; Hsu, L.I.; Chen, C.J. Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: A twelve-year follow-up study. Cancer Causes Control 2008, 19, 829–839. [Google Scholar] [CrossRef]
- Tseng, C.H.; Huang, Y.K.; Huang, Y.L.; Chung, C.J.; Yang, M.H.; Chen, C.J.; Hsueh, Y.M. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol. Appl. Pharmacol. 2005, 206, 299–308. [Google Scholar] [CrossRef]
- Steinmaus, C.; Moore, L.E.; Shipp, M.; Kalman, D.; Rey, O.A.; Biggs, M.L.; Hopenhayn, C.; Bates, M.N.; Zheng, S.; Wiencke, J.K.; et al. Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J. Toxicol. Environ. Health A 2007, 70, 159–170. [Google Scholar] [CrossRef]
- Su, C.T.; Lin, H.C.; Choy, C.S.; Huang, Y.K.; Huang, S.R.; Hsueh, Y.M. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents. Sci. Total Environ. 2012, 414, 152–158. [Google Scholar] [CrossRef]
- Gomez-Rubio, P.; Roberge, J.; Arendell, L.; Harris, R.B.; O’Rourke, M.K.; Chen, Z.; Cantu-Soto, E.; Meza-Montenegro, M.M.; Billheimer, D.; Lu, Z.; et al. Association between body mass index and arsenic methylation efficiency in adult women from southwest U.S. and northwest Mexico. Toxicol. Appl. Pharmacol. 2011, 252, 176–182. [Google Scholar] [CrossRef]
- Hopenhayn-Rich, C.; Biggs, M.L.; Smith, A.H.; Kalman, D.A.; Moore, L.E. Methylation study of a population environmentally exposed to arsenic in drinking water. Environ. Health Perspect. 1996, 104, 620–628. [Google Scholar] [CrossRef]
- Stýblo, M.; Drobná, Z.; Jaspers, I.; Lin, S.; Thomas, D.J. The role of biomethylation in toxicity and carcinogenicity of arsenic: A research update. Environ. Health Perspect. 2002, 110, 767–771. [Google Scholar] [CrossRef]
- Thomas, D.J.; Styblo, M.; Lin, S. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 2001, 176, 127–144. [Google Scholar] [CrossRef]
- Ahsan, H.; Chen, Y.; Kibriya, M.G.; Slavkovich, V.; Parvez, F.; Jasmine, F.; Gamble, M.V.; Graziano, J.H. Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1270–1278. [Google Scholar] [CrossRef]
- Del Razo, L.M.; García-Vargas, G.G.; Vargas, H.; Albores, A.; Gonsebatt, M.E.; Montero, R.; Ostrosky-Wegman, P.; Kelsh, M.; Cebrián, M.E. Altered profile of urinary arsenic metabolites in adults with chronic arsenicism. A pilot study. Arch. Toxicol. 1997, 71, 211–217. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, Q.; Li, Y.; Liu, J.; Wang, D.; Zheng, Q.; Sun, G. Differences of Urinary Arsenic Metabolites and Methylation Capacity between Individuals with and without Skin Lesions in Inner Mongolia, Northern China. Int. J. Environ. Res. Public Health 2014, 11, 7319-7332. https://doi.org/10.3390/ijerph110707319
Zhang Q, Li Y, Liu J, Wang D, Zheng Q, Sun G. Differences of Urinary Arsenic Metabolites and Methylation Capacity between Individuals with and without Skin Lesions in Inner Mongolia, Northern China. International Journal of Environmental Research and Public Health. 2014; 11(7):7319-7332. https://doi.org/10.3390/ijerph110707319
Chicago/Turabian StyleZhang, Qiang, Yongfang Li, Juan Liu, Da Wang, Quanmei Zheng, and Guifan Sun. 2014. "Differences of Urinary Arsenic Metabolites and Methylation Capacity between Individuals with and without Skin Lesions in Inner Mongolia, Northern China" International Journal of Environmental Research and Public Health 11, no. 7: 7319-7332. https://doi.org/10.3390/ijerph110707319
APA StyleZhang, Q., Li, Y., Liu, J., Wang, D., Zheng, Q., & Sun, G. (2014). Differences of Urinary Arsenic Metabolites and Methylation Capacity between Individuals with and without Skin Lesions in Inner Mongolia, Northern China. International Journal of Environmental Research and Public Health, 11(7), 7319-7332. https://doi.org/10.3390/ijerph110707319