The Role of Adolescent Nutrition and Physical Activity in the Prediction of Verbal Intelligence during Early Adulthood: A Genetically Informed Analysis of Twin Pairs
Abstract
:1. Introduction
1.1. The Link between Nutrition and Verbal Intelligence
1.2. The Link between Physical Activity and Verbal Intelligence
1.3. The Current Study
2. Method
2.1. Sample
2.2. Measures
2.2.1. Outcome Measure
Variable | Mean | Standard Deviation | Range |
---|---|---|---|
Verbal Intelligence (W3) | 46.32 | 29.55 | 0–100 |
Fast Food Consumption | 2.27 | 1.91 | 0–7 |
Low Vegetable Consumption | 0.25 | 0.43 | 0–1 |
Meal Deprivation | 0.24 | 0.23 | 0–1 |
Low Sports Involvement | 1.75 | 1.09 | 0–3 |
Low Cycling/Skating | 2.41 | 0.92 | 0–3 |
Low General Exercise | 1.52 | 1.05 | 0–3 |
Insufficient Exercise | 0.38 | 0.49 | 0–1 |
Age (W2) | 17.06 | 1.60 | 13.28–20.48 |
Age (W3) | 21.91 | 1.64 | 18–26 |
Sex (Male = 1) | 0.52 | 0.50 | 0–1 |
Twin Status (MZ = 1) | 0.53 | 0.50 | 0–1 |
2.2.2. Nutrition Measures
2.2.3. Physical Activity Measures
2.3. Plan of Analysis
3. Results
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | b | SE | b | SE | b | SE | b | SE | |
DF Analysis Components | ||||||||||
Shared Environment | 0.44 ** | 0.10 | 0.48 ** | 0.10 | 0.49 ** | 0.10 | 0.47 ** | 0.10 | 0.47 ** | 0.10 |
Heritability | 0.27 * | 0.11 | 0.25 * | 0.11 | 0.22 * | 0.11 | 0.24 * | 0.11 | 0.25 * | 0.11 |
Nonshared Sources of Variance | ||||||||||
Fast Food Consumption | −0.94 * | 0.45 | −0.80 | 0.46 | ||||||
Low Vegetable Consumption | −4.34 ** | 1.57 | −4.35 ** | 1.56 | ||||||
Meal Deprivation | −7.46 * | 3.87 | −8.10 * | 3.93 | ||||||
N | 694 | 644 | 646 | 648 | 646 | |||||
R2 | 0.41 | 0.45 | 0.44 | 0.44 | 0.45 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
b | SE | b | SE | b | SE | b | SE | b | SE | b | SE | |
DF Analysis Components | ||||||||||||
Shared Environment | 0.44 ** | 0.10 | 0.48 ** | 0.10 | 0.48 ** | 0.10 | 0.48 ** | 0.10 | 0.48 ** | 0.10 | 0.48 ** | 0.10 |
Heritability | 0.27 * | 0.11 | 0.23 * | 0.11 | 0.23 * | 0.11 | 0.23 * | 0.11 | 0.23 * | 0.11 | 0.24 * | 0.11 |
Nonshared Sources of Variance | ||||||||||||
Low Sports Involvement | 0.22 | 0.87 | −0.82 | 0.77 | ||||||||
Low Cycling/Skating | 1.57 | 0.95 | 0.87 | 0.95 | ||||||||
Low General Exercise | −0.49 | 0.87 | −1.30 | 0.77 | ||||||||
Insufficient Exercise | −4.11 * | 1.94 | −3.72 ** | 1.51 | ||||||||
N | 694 | 648 | 648 | 648 | 646 | 648 | ||||||
R2 | 0.41 | 0.44 | 0.44 | 0.44 | 0.45 | 0.44 |
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Benedict, C.; Brooks, S.J.; Kullberg, J.; Nordenskjöld, R.; Burgos, J.; Le Grevès, M.; Schiöth, H.B. Association between physical activity and brain health in older adults. Neurobiol. Aging 2013, 34, 83–90. [Google Scholar] [PubMed]
- Gómez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Nocera, J.; McGregor, K.M.; Hass, C.; Crosson, B. “Spin” exercise improves semantic fluency in previously sedentary older adults. J. Aging Phys. Activ. 2015, 23, 90–94. [Google Scholar] [CrossRef]
- Scudder, M.R.; Federmeier, K.D.; Raine, L.B.; Direito, A.; Boyd, J.K.; Hillman, C.H. The association between aerobic fitness and language processing in children: Implications for academic achievement. Brain Cognition 2014, 87, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Northstone, K.; Joinson, C.; Emmett, P.; Ness, A.; Paus, T. Are dietary patterns in childhood associated with IQ at 8 years of age? A population-based cohort study. J. Epidemiol. Community Health 2012, 66, 624–628. [Google Scholar] [CrossRef] [PubMed]
- von Stumm, S. You are what you eat? Meal type, socio-economic status and cognitive ability in childhood. Intelligence 2012, 40, 576–583. [Google Scholar] [CrossRef]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Develop. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef]
- Bielak, A.A.; Cherbuin, N.; Bunce, D.; Anstey, K.J. Preserved differentiation between physical activity and cognitive performance across young, middle, and older adulthood over 8 years. J. Gerontol. Ser. B-Psychol. Sci. 2014, 69, 523–532. [Google Scholar] [CrossRef]
- Liang, J.; Matheson, B.E.; Kaye, W.H.; Boutelle, K.N. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int. J. Obesity 2014, 38, 494–506. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Hillsdon, M.; Brunner, E.; Marmot, M. Effects of physical activity on cognitive functioning in middle age: Evidence from the Whitehall II prospective cohort study. Amer. J. Public Health 2005, 95, 2252–2258. [Google Scholar] [CrossRef]
- Åberg, M.A.; Åberg, N.; Brisman, J.; Sundberg, R.; Winkvist, A.; Torén, K. Fish intake of Swedish male adolescents is a predictor of cognitive performance. Acta. Paediat. 2009, 98, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Martyn, C.N.; Marriott, L.D.; Limond, J.; Crozier, S.; Inskip, H.M.; Robinson, S.M. Dietary patterns in infancy and cognitive and neuropsychological function in childhood. J. Child. Psychol. Psychiat. 2009, 50, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Nyaradi, A.; Li, J.; Hickling, S.; Whitehouse, A.J.; Foster, J.K.; Oddy, W.H. Diet in the early years of life influences cognitive outcomes at 10 years: A prospective cohort study. Acta Paediat. 2013, 102, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Kar, B.R.; Rao, S.L.; Chandramouli, B.A. Cognitive development in children with chronic protein energy malnutrition. Behav. Brain Funct. 2008, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Raine, A.; Venables, P.H.; Dalais, C.; Mednick, S.A. Malnutrition at age 3 years and lower cognitive ability at age 11 years: Independence from psychosocial adversity. Arch. Pediat. Adol. Med. 2003, 157, 593–600. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Ortega, F.B.; Castillo, R.; Martín-Matillas, M.; Kwak, L.; Vicente-Rodríguez, G.; Moreno, L.A. Physical activity, fitness, weight status, and cognitive performance in adolescents. J. Pediat. 2010, 157, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Hoyland, A.; Dye, L.; Lawton, C.L. A systematic review of the effect of breakfast on the cognitive performance of children and adolescents. Nutr. Res. Rev. 2009, 22, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Nooyens, A.C.; Bueno-de-Mesquita, H.B.; van Boxtel, M.P.; van Gelder, B.M.; Verhagen, H.; Verschuren, W.M. Fruit and vegetable intake and cognitive decline in middle-aged men and women: The Doetinchem cohort study. Brit. J. Nutr. 2011, 106, 752–761. [Google Scholar] [PubMed]
- Small, G.W.; Silverman, D.H.; Siddarth, P.; Ercoli, L.M.; Miller, K.J.; Lavretsky, H.; Phelps, M.E. Effects of a 14-day healthy longevity lifestyle program on cognition and brain function. Amer. J. Geriat. Psychiat. 2006, 14, 538–545. [Google Scholar]
- Esteban-Cornejo, I.; Gómez-Martínez, S.; Tejero-González, C.M.; Castillo, R.; Lanza-Saiz, R.; Vicente-Rodríguez, G.; Martinez-Gomez, D. Characteristics of extracurricular physical activity and cognitive performance in adolescents: The AVENA study. J. Sport. Sci. 2014, 32, 1596–1603. [Google Scholar] [CrossRef]
- Péneau, S.; Galan, P.; Jeandel, C.; Ferry, M.; Andreeva, V.; Hercberg, S.; Kesse-Guyot, E. Fruit and vegetable intake and cognitive function in the SU. VI. MAX 2 prospective study. Amer. J. Clin. Nutr. 2011, 94, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radical Biol. Med. 2009, 46, 719–730. [Google Scholar] [CrossRef]
- Walker, S.P.; Chang, S.M.; Powell, C.A.; Grantham-McGregor, S.M. Effects of early childhood psychosocial stimulation and nutritional supplementation on cognition and education in growth-stunted Jamaican children: Prospective cohort study. Lancet 2005, 366, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006, 30, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hwang, W.T.; Dickerman, B.; Compher, C. Regular breakfast consumption is associated with increased IQ in kindergarten children. Early Hum. Dev. 2013, 89, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.B.; Morley, R.; Lucas, A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J. Pediat. 2009, 155, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Corley, J.; Starr, J.M.; McNeill, G.; Deary, I.J. Do dietary patterns influence cognitive function in old age? Int. Psychogeriatr. 2013, 25, 1393–1407. [Google Scholar] [CrossRef] [PubMed]
- Fedewa, A.L.; Ahn, S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Res. Quart. Exercise Sport 2011, 82, 521–535. [Google Scholar] [CrossRef]
- Luciano, M.; Batty, G.D.; McGilchrist, M.; Linksted, P.; Fitzpatrick, B.; Jackson, C.; Deary, I.J. Shared genetic aetiology between cognitive ability and cardiovascular disease risk factors: Generation Scotland’s Scottish family health study. Intelligence 2010, 38, 304–313. [Google Scholar] [CrossRef]
- Udry, J.R. The National Longitudinal Study of Adolescent Health (Add Health), Waves I and II, 1994–1996; Wave III, 2001–2002; Carolina Population Center, University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2003. [Google Scholar]
- Jacobson, K.; Rowe, D.C. Genetics and environmental influences on the relationship between family connectedness, school connectedness and adolescent depressed mood: Sex differences. Develop. Psychol. 1999, 35, 926–939. [Google Scholar] [CrossRef]
- Beaver, K.M. Nonshared environmental influences on adolescent delinquent involvement and adult criminal behavior. Criminology 2008, 46, 341–369. [Google Scholar] [CrossRef]
- Jacobson, K.; Rowe, D.C. Genetic and shared environment influences on adolescent BMI: Interaction with race and sex. Behav. Genet. 1998, 28, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.C.; Jacobson, K.C.; van den Oord, E.J. Genetic and environmental influences on vocabulary IQ: Parental education level as moderator. Child Develop. 1999, 70, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, R.C.; Gray, J.W.; Dean, R.S. Construct validity of the PPVT with neuropsychological, intellectual, and achievement measures. J. Clin. Psychol. 1988, 44, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Bell, N.L.; Lassiter, K.S.; Matthews, T.D.; Hutchinson, M.B. Comparison of the peabody picture vocabulary test—Third edition and Wechsler adult intelligence scale—Third edition with university students. J. Clin. Psychol. 2001, 57, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Quattrocchi, M.M.; Golden, C.J. Peabody picture vocabulary test-revised and Luria-Nebraska neuropsychological battery for children: Intercorrelations for normal youngsters. Percept. Mot. Skills 1983, 56, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Niemeier, H.M.; Raynor, H.A.; Lloyd-Richardson, E.E.; Rogers, M.L.; Wing, R.R. Fast food consumption and breakfast skipping: Predictors of weight gain from adolescence to adulthood in a nationally representative sample. J. Adolescent Health 2006, 39, 842–849. [Google Scholar] [CrossRef]
- Stewart, S.D.; Menning, C.L. Family structure, nonresident father involvement, and adolescent eating patterns. J. Adolescent Health 2009, 45, 193–201. [Google Scholar] [CrossRef]
- Ornelas, I.J.; Perreira, K.M.; Ayala, G.X. Parental influences on adolescent physical activity: A longitudinal study. Int. J. Behav. Nutr. Phys. Activ. 2007, 4, 1–10. [Google Scholar] [CrossRef]
- DeFries, J.C.; Fulker, D.W. Multiple regression analysis of twin data. Behav. Genet. 1985, 15, 467–473. [Google Scholar] [CrossRef] [PubMed]
- DeFries, J.C.; Fulker, D.W. Multiple regression analysis of twin data: Etiology of deviant scores vs. individual differences. Acta Genet. Med. Gemellol. 1988, 37, 205–216. [Google Scholar] [PubMed]
- Rodgers, J.L.; Rowe, D.C.; Li, C. Beyond nature vs. nurture: DF analysis of nonshared influences on problem behaviors. Develop. Psychol. 1994, 30, 374–384. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Kohler, H.P. Reformulating and simplifying the DF analysis model. Behav. Genet. 2005, 35, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Beaver, K.M.; Schutt, J.E.; Boutwell, B.B.; Ratchford, M.; Roberts, K.; Barnes, J.C. Genetic and environmental influences on levels of self-control and delinquent peer affiliation results from a longitudinal sample of adolescent twins. Crim. Justice Behav. 2009, 36, 41–60. [Google Scholar] [CrossRef]
- Haynie, D.L.; McHugh, S. Sibling deviance: In the shadows of mutual and unique friendship effects. Criminology 2003, 41, 355–392. [Google Scholar] [CrossRef]
- Kohler, H.P.; Rodgers, J.L. DF-analysis of heritability with double-entry twin data: Asymptotic standard errors and efficient estimation. Behav. Genet. 2001, 31, 179–191. [Google Scholar] [CrossRef] [PubMed]
- van Soelen, I.L.; Brouwer, R.M.; Leeuwen, M.V.; Kahn, R.S.; Hulshoff Pol, H.E.; Boomsma, D.I. Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Res. Human Genet. 2011, 14, 119–128. [Google Scholar]
- Hoekstra, R.A.; Bartels, M.; Boomsma, D.I. Longitudinal genetic study of verbal and nonverbal IQ from early childhood to young adulthood. Learn. Individ. Differ. 2007, 17, 97–114. [Google Scholar] [CrossRef]
- Barnes, J.C.; Boutwell, B.B. A demonstration of the generalizability of twin-based research on antisocial behavior. Behav. Genet. 2013, 43, 120–131. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, D.B.; Beaver, K.M. The Role of Adolescent Nutrition and Physical Activity in the Prediction of Verbal Intelligence during Early Adulthood: A Genetically Informed Analysis of Twin Pairs. Int. J. Environ. Res. Public Health 2015, 12, 385-401. https://doi.org/10.3390/ijerph120100385
Jackson DB, Beaver KM. The Role of Adolescent Nutrition and Physical Activity in the Prediction of Verbal Intelligence during Early Adulthood: A Genetically Informed Analysis of Twin Pairs. International Journal of Environmental Research and Public Health. 2015; 12(1):385-401. https://doi.org/10.3390/ijerph120100385
Chicago/Turabian StyleJackson, Dylan B., and Kevin M. Beaver. 2015. "The Role of Adolescent Nutrition and Physical Activity in the Prediction of Verbal Intelligence during Early Adulthood: A Genetically Informed Analysis of Twin Pairs" International Journal of Environmental Research and Public Health 12, no. 1: 385-401. https://doi.org/10.3390/ijerph120100385
APA StyleJackson, D. B., & Beaver, K. M. (2015). The Role of Adolescent Nutrition and Physical Activity in the Prediction of Verbal Intelligence during Early Adulthood: A Genetically Informed Analysis of Twin Pairs. International Journal of Environmental Research and Public Health, 12(1), 385-401. https://doi.org/10.3390/ijerph120100385