Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers’ Pneumoconiosis in Chinese Han Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotyping
2.3. Human MMP3 Levels in Serum Samples
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
Variables | CWP (n = 693) | Controls (n = 690) | p | |||
---|---|---|---|---|---|---|
N | % | N | % | |||
Age, Year (mean ± SD) | 68.0 ± 11.1 | 67.1 ± 8.4 | 0.113 | |||
Exposure years (mean ± SD) | 26.6 ± 9.0 | 27.3 ± 7.8 | 0.107 | |||
Smoking status | ||||||
Never | 340 | 49.1 | 359 | 52.0 | 0.270 | |
Ever | 353 | 50.9 | 331 | 48.0 | ||
Former | 162 | 23.4 | 91 | 13.2 | ||
Current | 191 | 27.5 | 240 | 34.8 | ||
Pack-years smoked | <0.001 | |||||
0 | 340 | 49.1 | 359 | 52.0 | ||
0–20 | 220 | 31.7 | 130 | 18.9 | ||
>20 | 133 | 19.2 | 201 | 29.1 | ||
Work type | 0.534 | |||||
Tunnel and coal mining | 659 | 95.1 | 648 | 94.0 | ||
Transport | 16 | 2.3 | 17 | 2.5 | ||
Others | 18 | 2.6 | 25 | 3.6 | ||
Stage | ||||||
I | 415 | 59.9 | ||||
II | 217 | 31.3 | ||||
III | 61 | 8.8 |
3.2. Associations between the Functional MMP Genes Polymorphisms and CWP Risk
Gene | rs No. | Location | Base Change | MAF | HWE a | Genotyping Rate (%) | |
---|---|---|---|---|---|---|---|
Case | Control | ||||||
MMP1 | rs1799750 | Promoter | G/- | 0.359 | 0.324 | 0.663 | 99.3 |
MMP2 | rs2285053 | Promoter | C > T | 0.225 | 0.236 | 0.596 | 99.2 |
MMP3 | rs522616 | Promoter | A > G | 0.340 | 0.372 | 0.117 | 98.7 |
Variables | CWP Cases | Controls | p a | OR (95% CI) | OR (95% CI) b | ||
---|---|---|---|---|---|---|---|
N | % | N | % | ||||
rs1799750 | n = 690 | n = 683 | |||||
2G/2G | 276 | 40.0 | 309 | 45.2 | 0.082 | 1.00 | 1.00 |
2G/1G | 325 | 47.1 | 305 | 44.7 | 1.19 (0.95–1.49) | 1.19 (0.95–1.49) | |
1G/1G | 89 | 12.9 | 69 | 10.1 | 1.44 (1.01–2.06) | 1.45 (1.02–2.07) | |
2Gallele | 877 | 63.6 | 923 | 67.6 | 1.00 | ||
1Gallele | 503 | 36.4 | 443 | 32.4 | 0.027 | 1.20 (1.02–1.40) | 1.20 (1.02–1.40) |
ADD | 0.026 | 1.20 (1.02–1.41) | |||||
DOM | 0.050 | 1.24 (1.00–1.54) | 1.24 (1.00–1.54) | ||||
REC | 0.104 | 1.32 (0.94–1.84) | 1.32 (0.94–1.85) | ||||
rs2285053 | n = 690 | n = 682 | |||||
CC | 409 | 59.3 | 395 | 57.9 | 0.684 | 1.00 | 1.00 |
CT | 252 | 36.5 | 252 | 37.0 | 0.97 (0.77–1.21) | 0.98 (0.79–1.23) | |
TT | 29 | 4.2 | 35 | 5.1 | 0.80 (0.48–1.33) | 0.79 (0.47–1.32) | |
C allele | 1070 | 77.5 | 1042 | 76.4 | 1.00 | ||
T allele | 310 | 22.5 | 322 | 23.6 | 0.477 | 0.94 (0.78–1.12) | 0.94 (0.79–1.13) |
ADD | 0.468 | 0.94 (0.78–1.12) | |||||
DOM | 0.610 | 0.94 (0.76–1.17) | 0.96 (0.77–1.19) | ||||
REC | 0.414 | 0.81 (0.49–1.34) | 0.80 (0.48–1.32) | ||||
rs522616 | n = 690 | n = 675 | |||||
AA | 301 | 43.6 | 276 | 40.9 | 0.130 | 1.00 | 1.00 |
AG | 309 | 44.8 | 296 | 43.8 | 0.96 (0.76–1.20) | 0.96 (0.76–1.20) | |
GG | 80 | 11.6 | 103 | 15.3 | 0.71 (0.51–0.99) | 0.70 (0.50–0.98) | |
A allele | 911 | 66.0 | 848 | 62.8 | 1.00 | ||
G allele | 469 | 34.0 | 502 | 37.2 | 0.081 | 0.87 (0.74–1.02) | 0.86 (0.74–1.01) |
ADD | 0.086 | 0.87 (0.75–1.02) | |||||
DOM | 0.307 | 0.89 (0.72–1.11) | 0.89 (0.72–1.10) | ||||
REC | 0.047 | 0.73 (0.53–0.99) | 0.72 (0.52–0.99) |
Variables | Cases/Controls | Genotypes (Cases/Controls) | p a | OR (95% CI) a | |||
---|---|---|---|---|---|---|---|
AA/AG | GG | ||||||
n | % | n | % | ||||
Total age | 690/675 | 610/572 | 88.4/84.7 | 80/103 | 11.6/15.3 | 0.041 | 0.72 (0.52–0.99) |
<68 | 275/397 | 246/335 | 89.4/84.4 | 29/62 | 10.6/15.6 | 0.199 | 0.72 (0.43–1.19) |
≥68 | 415/278 | 364/237 | 87.7/85.2 | 51/41 | 12.3/14.8 | 0.379 | 0.82 (0.52–1.28) |
Exposure years | |||||||
<27 | 268/261 | 236/216 | 88.1/82.8 | 32/45 | 11.9/17.2 | 0.060 | 0.62 (0.38–1.02) |
≥27 | 422/414 | 374/356 | 88.6/86.0 | 48/58 | 11.4/14.0 | 0.268 | 0.79 (0.52–1.20) |
Smoking status | |||||||
Never | 339/351 | 302/295 | 89.1/84.0 | 37/56 | 10.9/16.0 | 0.049 | 0.64 (0.41–1.00) |
Ever | 351/324 | 308/277 | 87.8/85.5 | 43/47 | 12.2/14.5 | 0.344 | 0.81(0.52–1.26) |
Stage | |||||||
I | 413/675 | 368/572 | 89.1/84.7 | 45/103 | 10.9/15.3 | 0.032 | 0.66 (0.45–0.96) |
II | 216/675 | 193/572 | 89.4/84.7 | 23/103 | 10.6/15.3 | 0.213 | 0.73 (0.44–1.20) |
III | 61/675 | 49/572 | 80.3/84.7 | 12/103 | 19.7/15.3 | 0.188 | 1.59 (0.80–3.18) |
3.3. Association and Stratification Analysis between MMP3 Expression and CWP Risk
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Castranova, V.; Vallyathan, V. Silicosis and coal workers’ pneumoconiosis. Environ. Health Perspect. 2000, 108, S675–S684. [Google Scholar] [CrossRef]
- McCunney, R.J.; Morfeld, P.; Payne, S. What component of coal causes coal workers’ pneumoconiosis? J. Occup. Environ. Med. 2009, 51, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Pneumoconiosis and advanced occupational lung disease among surface coal miners—16 States, 2010–2011. Morb. Mortal. Wkly. Rep. 2012, 61, 431–434. [Google Scholar]
- Gulumian, M.; Borm, P.J.; Vallyathan, V.; Castranova, V.; Donaldson, K.; Nelson, G.; Murray, J. Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker’s pneumoconiosis: A comprehensive review. J. Toxicol. Environ. Health B Crit. Rev. 2006, 9, 357–395. [Google Scholar] [CrossRef] [PubMed]
- Petsonk, E.L.; Rose, C.; Cohen, R. Coal mine dust lung disease. New lessons from old exposure. Am. J. Respir. Crit. Care Med. 2013, 187, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wu, B.; Jin, K.; Luo, C.; Han, R.; Chen, M.; Hou, Z.; Fan, J.; Ni, C. MUC5B promoter polymorphisms and risk of coal workers’ pneumoconiosis in a Chinese population. Mol. Biol. Rep. 2014, 41, 4171–4176. [Google Scholar] [CrossRef] [PubMed]
- Ates, I.; Yucesoy, B.; Yucel, A.; Suzen, S.H.; Karakas, Y.; Karakaya, A. Possible effect of gene polymorphisms on the release of TNFα and IL1 cytokines in coal workers’ pneumoconiosis. Exp. Toxicol. Pathol. 2011, 63, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Parks, W.C.; Wilson, C.L.; Lopez-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.T.; McMahon, K.; Mackarel, A.J.; Prikk, K.; Sorsa, T.; Maisi, P.; Sepper, R.; Fitzgerald, M.X.; O’Connor, C.M. Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur. Respir. J. 2002, 20, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [PubMed]
- Ye, S. Polymorphism in matrix metalloproteinase gene promoters: Implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol. 2000, 19, 623–629. [Google Scholar] [CrossRef]
- Kanamori, Y.; Matsushima, M.; Minaguchi, T.; Kobayashi, K.; Sagae, S.; Kudo, R.; Terakawa, N.; Nakamura, Y. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/deletion polymorphism in its promoter region. Cancer Res. 1999, 59, 4225–4227. [Google Scholar] [PubMed]
- Joos, L.; He, J.Q.; Shepherdson, M.B.; Connett, J.E.; Anthonisen, N.R.; Pare, P.D.; Sandford, A.J. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum. Mol. Genet. 2002, 11, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.H.; Chou, P.C.; Chou, C.L.; Ho, S.C.; Joa, W.C.; Chen, L.F.; Sheng, T.F.; Lin, H.C.; Wang, T.Y.; Chang, P.J.; et al. Matrix metalloproteinase-1 polymorphism (-1607G) and disease severity in non-cystic fibrosis bronchiectasis in Taiwan. PLoS ONE 2013, 8, e66265. [Google Scholar] [CrossRef] [PubMed]
- Saracini, C.; Bolli, P.; Sticchi, E.; Pratesi, G.; Pulli, R.; Sofi, F.; Pratesi, C.; Gensini, G.F.; Abbate, R.; Giusti, B. Polymorphisms of genes involved in extracellular matrix remodeling and abdominal aortic aneurysm. J. Vasc. Surg. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Yu, C.; Miao, X.; Wang, Y.; Tan, W.; Sun, T.; Zhang, X.; Xiong, P.; Lin, D. Functional haplotypes in the promoter of matrix metalloproteinase-2 and lung cancer susceptibility. Carcinogenesis 2005, 26, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, C.M.; Dolgonos, L.; Zemans, R.L.; Young, S.K.; Robertson, J.; Briones, N.; Suzuki, T.; Campbell, M.N.; Gauldie, J.; Radisky, D.C.; et al. Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am. J. Pathol. 2011, 179, 1733–1745. [Google Scholar] [CrossRef] [PubMed]
- Rutter, J.L.; Mitchell, T.I.; Buttice, G.; Meyers, J.; Gusella, J.F.; Ozelius, L.J.; Brinckerhoff, C.E. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 1998, 58, 5321–5325. [Google Scholar] [PubMed]
- Yu, C.; Zhou, Y.; Miao, X.; Xiong, P.; Tan, W.; Lin, D. Functional haplotypes in the promoter of matrix metalloproteinase-2 predict risk of the occurrence and metastasis of esophageal cancer. Cancer Res. 2004, 64, 7622–7628. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ye, Y.; Qian, H.; Song, Z.; Jia, X.; Zhang, Z.; Zhou, J.; Ni, C. Common genetic variants in pre-micrornas are associated with risk of coal workers’ pneumoconiosis. J. Hum. Genet. 2010, 55, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Hou, Z.; Wang, T.; Jin, K.; Fan, J.; Luo, C.; Chen, M.; Han, R.; Ni, C. Polymorphisms in inflammasome genes and risk of coal workers’ pneumoconiosis in a Chinese population. PLoS ONE 2012, 7, e47949. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Ji, X.; Chen, W.; Zhang, R.; Sun, C.; Wang, T.; Luo, C.; Gong, J.; Zhu, M.; Fan, J.; et al. A genome-wide association study identifies susceptibility loci of silica related pneumoconiosis in Han Chinese. Hum. Mol. Genet. 2014, 23, 6385–6394. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Lin, H.C.; Lin, S.M.; Huang, C.D.; Liu, C.Y.; Huang, K.H.; Hsieh, L.L.; Chung, K.F.; Kuo, H.P. MMP-1(-1607G) polymorphism as a risk factor for fibrosis after pulmonary tuberculosis in Taiwan. Int. J. Tuberc. Lung Dis. 2010, 14, 627–634. [Google Scholar] [PubMed]
- Zuo, F.; Kaminski, N.; Eugui, E.; Allard, J.; Yakhini, Z.; Ben-Dor, A.; Lollini, L.; Morris, D.; Kim, Y.; DeLustro, B.; et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl. Acad. Sci. USA 2002, 99, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.; Ruiz, V.; Cabrera, S.; Segura, L.; Ramirez, R.; Barrios, R.; Pardo, A. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L562–L574. [Google Scholar] [PubMed]
- Fukuda, Y.; Ishizaki, M.; Kudoh, S.; Kitaichi, M.; Yamanaka, N. Localization of matrix metalloproteinases-1, -2, and -9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab. Invest. 1998, 78, 687–698. [Google Scholar] [PubMed]
- Huai, C.; Song, J.; Ma, Z.; Qin, X.; Li, P.; Chen, H.; Zhao, F.; Lu, D.; Song, D.; Mao, Y.; et al. Allelic variation of the MMP3 promoter affects transcription activity through the transcription factor C-MYB in human brain arteriovenous malformations. PLoS ONE 2013, 8, e57958. [Google Scholar] [CrossRef] [PubMed]
- Emonard, H.; Takiya, C.; Dreze, S.; Cordier, J.F.; Grimaud, J.A. Interstitial collagenase (MMP-1), gelatinase (MMP-2) and stromelysin (MMP-3) released by human fibroblasts cultured on acellular sarcoid granulomas (sarcoid matrix complex, SMC). Matrix 1989, 9, 382–388. [Google Scholar] [CrossRef]
- Ng, T.P.; Chan, S.L. Factors associated with massive fibrosis in silicosis. Thorax 1991, 46, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Hessel, P.A.; Gamble, J.F.; Nicolich, M. Relationship between silicosis and smoking. Scand. J. Work Environ. Health 2003, 29, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Lira, J.; Gaxiola, M.; Ramos, C.; Selman, M.; Pardo, A. Cigarette smoke exposure potentiates bleomycin-induced lung fibrosis in guinea pigs. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 285, L949–L956. [Google Scholar] [CrossRef] [PubMed]
- Treszl, A.; Kocsis, I.; Szathmari, M.; Schuler, A.; Tulassay, T.; Vasarhelyi, B. Genetic variants of the tumour necrosis factor-alpha promoter gene do not influence the development of necrotizing enterocolitis. Acta Paediatr. 2001, 90, 1182–1185. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Wang, L.; Wu, B.; Han, R.; Han, L.; Wang, T.; Yang, J.; Ni, C. Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers’ Pneumoconiosis in Chinese Han Population. Int. J. Environ. Res. Public Health 2015, 12, 13901-13912. https://doi.org/10.3390/ijerph121113901
Ji X, Wang L, Wu B, Han R, Han L, Wang T, Yang J, Ni C. Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers’ Pneumoconiosis in Chinese Han Population. International Journal of Environmental Research and Public Health. 2015; 12(11):13901-13912. https://doi.org/10.3390/ijerph121113901
Chicago/Turabian StyleJi, Xiaoming, Lijuan Wang, Baiqun Wu, Ruhui Han, Lei Han, Ting Wang, Jingjin Yang, and Chunhui Ni. 2015. "Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers’ Pneumoconiosis in Chinese Han Population" International Journal of Environmental Research and Public Health 12, no. 11: 13901-13912. https://doi.org/10.3390/ijerph121113901