Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Copper Oxide Nanoparticles
2.3. Natural Samples
2.3.1. Saturated Groundwater Aquifer Colloid Extract
2.3.2. Topsoil Colloid Extracts: Sampling Area
2.3.3. Topsoil Colloid Extracts: Colloid Extraction Procedure
2.3.4. Total Copper Measurement
2.3.5. Spiking Experiments
2.4. Single Particle ICP-MS
2.4.1. Instrument Settings
2.4.2. Data Analysis
3. Results and Discussion
3.1. Characteristics of CuO NPs
3.2. Characteristics of Soil Colloidal Extracts
3.2.1. Elemental Composition
Sample Code | Si | Al | Fe | Mg | Mn | Ni | Zn | Cu | pH |
---|---|---|---|---|---|---|---|---|---|
mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | mg·L−1 | µg·L−1 | µg·L−1 | µg·L−1 | ||
SG | 27.1 | 10 | 19.2 | 0.9 | 5.2 | 22.2 | 82.4 | 30 | 7.0 |
LT1 | 334 | 644 | 130 | 29.8 | 1.1 | 139.9 | 613.7 | 102 | 6.8 |
PS2 | 808 | 427 | 161 | 42.5 | 2.8 | 205.2 | 672.0 | 179 | 7.2 |
PS3 | 668 | 371 | 190 | 39.1 | 1.6 | 224.2 | 743.2 | 217 | 6.6 |
3.2.2. Single Particle ICP-MS: Optimizing Sample Dilution
Sample | 5 ms | 0.1 ms | ||||||
---|---|---|---|---|---|---|---|---|
NP Spikes | [NP] | µdiss | 7σdiss | NP Spikes | [NP] | µdiss | 7σdiss | |
min−1 | mL−1 | (counts) | (counts) | min−1 | mL−1 | (counts) | (counts) | |
Blank (Milli-Q) | 0.9 (±1.0) | 53 (±59) | 2.3 (±0.5) | 9 (±1.8) | 21 (±21) | 1.2 (±1.2) × 103 | 1.1 (±0.01) | 2 (±0.1) |
CuO NPs | 286 | 1.6 × 104 | 10 | 63 | 816 | 4.7 × 104 | 1 | 5 |
SG (unspiked) | 1 | 5.7 × 101 | 577 | 220 | 4 | 2.3 × 102 | 12 | 26 |
LT1 (unspiked) | 8 | 4.6 × 102 | 221 | 135 | 60 | 3.4 × 103 | 4 | 15 |
PS2 (unspiked) | 3 | 1.7 × 102 | 431 | 205 | 30 | 1.7 × 103 | 8 | 22 |
PS3 (unspiked) | 2 | 1.1 × 102 | 460 | 202 | 20 | 1.1 × 103 | 9 | 23 |
SG + CuO NPs | 20 | 1.1 × 103 | 582 | 245 | 30 | 1.7 × 103 | 12 | 26 |
LT1 + CuO NPs | 63 | 3.6 × 103 | 224 | 169 | 192 | 1.1 × 104 | 5 | 16 |
PS2 + CuO NPs | 32 | 1.8 × 103 | 528 | 261 | 156 | 8.9 × 103 | 8 | 22 |
PS3 + CuO NPs | 42 | 2.4 × 103 | 442 | 229 | 106 | 6.1 × 103 | 9 | 23 |
3.3. Detection of CuO NPs in Spiked Colloidal Extracts
Sample | 5 ms | 0.1 ms | ||
---|---|---|---|---|
NPs above CT | [NP] above CT | NPs above CT | [NP] above CT | |
mL−1 | mL−1 | |||
CuO NPs | Yes | 1.6 × 104 | Yes | 4.2 × 104 |
SG (unspiked) | No | BDL | No | BCT |
LT1 (unspiked) | Yes | 2.3 × 102 | No | BCT |
PS2 (unspiked) | No | BCT | No | BCT |
PS3 (unspiked) | No | BCT | No | BCT |
SG + CuO NPs | Yes | 9.1 × 102 | No | BCT |
LT1 + CuO NPs | Yes | 3.4 × 103 | Yes | 6.2 × 103 |
PS2 + CuO NPs | Yes | 1.6 × 103 | Yes | 4.1 × 103 |
PS3 + CuO NPs | Yes | 2.2 × 103 | Yes | 1.3 × 103 |
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kessler, R. Engineered nanoparticles in consumer products: Understanding a new ingredient. Environ. Health Perspect. 2011, 119, A120–A125. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.; Matsunaga, H.; Kiguchi, M. Large-scale application of nanotechnology for wood protection. Nat. Nanotechnol. 2008, 3. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, A.L.D.F.; Melegari, S.P.; Ouriques, L.C.; Matias, W.G. Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using daphnia magna and vibrio fischeri. Sci. Total Environ. 2014, 490, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Gondikas, A.P.; von der Kammer, F.; Reed, R.B.; Wagner, S.; Ranville, J.F.; Hofmann, T. Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the old danube recreational lake. Environ. Sci. Technol. 2014, 48, 5415–5422. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart Res. 2013, 15, 1–17. [Google Scholar] [CrossRef]
- Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216–9222. [Google Scholar] [CrossRef] [PubMed]
- von der Kammer, F.; Ferguson, P.L.; Holden, P.A.; Masion, A.; Rogers, K.R.; Klaine, S.J.; Koelmans, A.A.; Horne, N.; Unrine, J.M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Gondikas, A.; Neubauer, E.; Hofmann, T.; von der Kammer, F. Spot the difference: Engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew Chem. Int. Ed. 2014, 53, 12398–12419. [Google Scholar] [CrossRef] [PubMed]
- Proulx, K.; Wilkinson, K.J. Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS). Environ. Chem. 2014, 11, 392–401. [Google Scholar] [CrossRef]
- Degueldre, C.; Favarger, P.Y.; Wold, S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal. Chim. Acta 2006, 555, 263–268. [Google Scholar] [CrossRef]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361–9369. [Google Scholar] [CrossRef] [PubMed]
- Montano, M.D.; Lowry, G.V.; von der Kammer, F.; Blue, J.; Ranville, J.F. Current status and future direction for examining engineered nanoparticles in natural systems. Environ. Chem. 2014, 11, 351–366. [Google Scholar] [CrossRef]
- Sposito, G. The Chemistry of Soils, 2nd ed.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Weber, F.A.; Voegelin, A.; Kaegi, R.; Kretzschmar, R. Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nat. Geosci. 2009, 2, 267–271. [Google Scholar] [CrossRef]
- Luther, G.W.; Theberge, S.M.; Rozan, T.F.; Rickard, D.; Rowlands, C.C.; Oldroyd, A. Aqueous copper sulfide clusters as intermediates during copper sulfide formation. Environ. Sci. Technol. 2002, 36, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Hofacker, A.F.; Voegelin, A.; Kaegi, R.; Kretzschmar, R. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles. Environ. Sci. Technol. 2013, 47, 7739–7746. [Google Scholar] [CrossRef] [PubMed]
- Maurer, F.; Christl, I.; Fulda, B.; Voegelin, A.; Kretzschmar, R. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 2. Potentiometric titrations and dialysis cell experiments. Environ. Sci. Technol. 2013, 47, 10912–10921. [Google Scholar] [CrossRef] [PubMed]
- Fulda, B.; Voegelin, A.; Maurer, F.; Christl, I.; Kretzschmar, R. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study. Environ. Sci. Technol. 2013, 47, 10903–10911. [Google Scholar] [CrossRef] [PubMed]
- Salminen, R. The geochemical atlas of Europe continent-wide distribution patterns of elements. Geochim Cosmochim Acta 2007, 71, A869. [Google Scholar]
- Dubascoux, S.; von der Kammer, F.; le Hecho, I.; Gautier, M.P.; Lespes, G. Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation. J. Chromatogr. A 2008, 1206, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Plathe, K.L.; von der Kammer, F.; Hassellov, M.; Moore, J.; Murayama, M.; Hofmann, T.; Hochella, M.F., Jr. Using FlFFFand a TEM to determine trace metal-nanoparticle associations in riverbed sediment. Environ. Chem. 2010, 7, 82–93. [Google Scholar] [CrossRef]
- von der Kammer, F. Characterization of Environmental Colloids Applying Field-Flow Fractionation—Multi Detection Analysis with Emphasis on Light Scattering Techniques. PhD Thesis, Technical University of Hamburg, Hamburg, Germany, June 2004. [Google Scholar]
- Mitrano, D.M.; Barber, A.; Bednar, A.; Westerhoff, P.; Higgins, C.P.; Ranville, J.F. Silver nanoparticle characterization using single particle ICP-MS (sp-ICP-MS) and asymmetrical flow field flow fractionation icp-ms (AF4-ICP-MS). J. Anal. Atom. Spectrom. 2012, 27, 1131–1142. [Google Scholar] [CrossRef]
- Tuoriniemi, J.; Cornelis, G.; Hassellov, M. Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation. J. Anal. Atom. Spectrom. 2014, 29, 743–752. [Google Scholar] [CrossRef]
- Tuoriniemi, J.; Cornelis, G.; Hassellov, M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem. 2012, 84, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Hadioui, M.; Peyrot, C.; Wilkinson, K.J. Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal. Chem. 2014, 86, 4668–4674. [Google Scholar] [CrossRef] [PubMed]
- Hassellov, M.; von der Kammer, F. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 2008, 4, 401–406. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navratilova, J.; Praetorius, A.; Gondikas, A.; Fabienke, W.; Von der Kammer, F.; Hofmann, T. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. Int. J. Environ. Res. Public Health 2015, 12, 15756-15768. https://doi.org/10.3390/ijerph121215020
Navratilova J, Praetorius A, Gondikas A, Fabienke W, Von der Kammer F, Hofmann T. Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health. 2015; 12(12):15756-15768. https://doi.org/10.3390/ijerph121215020
Chicago/Turabian StyleNavratilova, Jana, Antonia Praetorius, Andreas Gondikas, Willi Fabienke, Frank Von der Kammer, and Thilo Hofmann. 2015. "Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS" International Journal of Environmental Research and Public Health 12, no. 12: 15756-15768. https://doi.org/10.3390/ijerph121215020
APA StyleNavratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., Von der Kammer, F., & Hofmann, T. (2015). Detection of Engineered Copper Nanoparticles in Soil Using Single Particle ICP-MS. International Journal of Environmental Research and Public Health, 12(12), 15756-15768. https://doi.org/10.3390/ijerph121215020