Exposure to Mercury and Aluminum in Early Life: Developmental Vulnerability as a Modifying Factor in Neurologic and Immunologic Effects
Abstract
:1. Introduction
2. Exposure and Metabolism of EtHg and Al During Early Life
2.1. Hg and Al Exposure in Human Milk, Infant Formulas, and in TCVs
2.2. Physiological and Metabolic Characteristics of Newborns and Neonates Relevant to Xenobiotic Exposure and Effects
2.3. Insights Gained from Experimental Studies Modeling Early Life Exposure to TCVs
3. Are TCV-EtHg and Al-Adjuvant Exposures in Early Life Associated with Neurodevelopment Outcomes in Childhood?
4. Immunological and Inflammatory Reactions to Thimerosal and Al-Adjuvants Resulting from TCV Exposure in Infancy
Reference | Country | n | Age of Test | Test | Additional Exposure to TCV | Outcomes |
---|---|---|---|---|---|---|
Marques et al. [105] | Brazil | 82 | 6 m | GDS | Reanalysis of 23 variables that included maternal and infant exposure analyzed by a mathematical model (PCA). | Principal Component Analysis discriminated variability of early vaccine schedule and neurodevelopment outcomes associated with variables that included pre- and post-natal Hg exposure. |
Marques et al. [106] | Brazil | 82 | 6; 36; 60 m | GDS | Prenatal maternal exposure to MeHg. | No significant association with day of the first postnatal dose of a TCV (HBV). |
Marques et al. [107] | Brazil | 82 | 6 m | GDS | Prenatal maternal exposure to TCVs and MeHg. | GDS at 6 m was significantly associated with total Hg of neonate’s hair but was not sensitive to the number of TCVs taken by the mother. |
Marques et al. [108] | Brazil | 249 | 0 to 5 y | GDS | MeHg (HHg) in children of traditional fish eaters. | No significant association with total TCV-EtHg exposure at time of test. |
Marques et al. [109] | Brazil | 688 | 0 to 5 y | GDS | Hair-Hg concentrations in children of tin-ore miners. | No significant association with total TCV-EtHg exposure at time of test. |
Dórea et al. [79] | Brazil | 281 | 6 m | GDS | Prenatal maternal exposure to MeHg. | A higher score of neurological development at six months was negatively associated with exposure to additional TCV-EtHg. |
Lee and Ha [80] | South Korea | 299 | 6 m | BSID-II | Second hand smoking. | There were marginal differences in MDI scores according to TCV history (information incomplete). |
Mrozek-Budzyn et al. [81] | Poland | 196 | 12; 24; 36 m. | BSID-II | Second hand smoking; cord blood-Hg; cord blood-Pb. | An adverse effect of neonatal TCV exposure was observed for the PDI only in the 12th and 24th months of life. |
Marques et al. [14] | Brazil | 96 | 6; 24 m | BSID-II | Prenatal maternal exposure to MeHg and environmental Pb. | MDI and PDI were statistically significant (respectively p < 0.0000001, p = 0.000007) lower for the children living in a multi-exposure environment that included higher EtH exposure only at 24 months of age. Multivariate regression analysis showed that MDI was negatively affected by breast-milk Pb and by HHg. PDI was positively affected by breastfeeding and negatively affected by EtHg. |
Dórea et al. [34] | Brazil | 299 | 12 to 24 m | GDS | Hair-Hg concentrations in children of tin-ore miners and fishing villages. | Despite significantly higher exposure to both forms of organic Hg (MeHg from maternal fish consumption, and EtHg from TCV) in toddlers from the fishing village, significant differences were seen only among the proportions of most severely affected toddlers (GDS < 70). |
Mrozek-Budzyn et al. [82] | Poland | 318 | 6 m. 12; 24; 36 m. 6;7;9 y | Fagan BSID-II WISC | Second hand smoking; cord blood-Hg; cord blood-Pb. | Adverse effects on cognitive tests (Fagan, MDI only at 36 month, and WISC only at 9 y) were observed for neonatal TCV exposure. |
Marques et al. [110] | Brazil | 294 | 6; 24 m | BSID-II | Prenatal maternal exposure to MeHg in tin-ore mining settlement. | No significant association of BSID with total TCV-EtHg exposure at time of test. There was a significant sex difference in neurodevelopment, with boys showing more sensitivity related to BSID delays. |
5. Conclusions
- Newborns vary in size, organ development, genetics, pregnancy environment; these characteristics per se could slow metabolism or accentuate toxicity of xenobiotics, yet fetuses and infants are continually exposed to EtHg doses proven to produce effects on experimental models.
- The uptake and elimination rates of Hg during the neonatal period (especially in preterms and small-for-gestational-age newborns) are different from anything experienced in later stages of development or during adulthood.
- In the most vulnerable period of human development, Hg and Al transfer-efficiencies into brain tissues and assessment of neurochemical effects are difficult to model and also to interpret functional outcomes in older ages.
- Observational and cohort studies have consistently shown significant interactions of TCV-EtHg compatible with Hg toxicity at low doses.
- We need models relevant to pediatric vaccines to test early EtHg and Al exposures in relation to constitutional and environmental co-exposures and other modifying factors.
- Concerns about the safety of Thimerosal (in relation to the developing CNS) are undervalued relative to its use as a preservative in pediatric vaccines on account of costs.
- Any interventional agent should respect the special stages of the developing human brain—in fetuses, infants, and young children. Therefore, specific recommendations for newborns and preterms should be in place for immunization with TCVs.
Acknowledgments
Conflicts of Interest
References
- Obladen, M. Curse on two generations: A history of congenital syphilis. Neonatology 2013, 103, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Petering, H.G.; Tepper, L.B. The pharmacology and toxicology of heavy metals: Mercury. Pharmac. Ther. 1976, 1, 131–151. [Google Scholar]
- Black, J. The puzzle of pink disease. J. R. Soc. Med. 1999, 92, 478–481. [Google Scholar] [PubMed]
- Warkany, J.; Hubbard, D.M. Acrodynia and mercury. J. Pediatr. 1953, 42, 365–386. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, O.P.; Slone, D.; Shapiro, S. Birth Defects and Drugs in Pregnancy; Publishing Sciences Group: Littleton, MA, USA, 1977; p. 302. [Google Scholar]
- Geier, D.A.; Sykes, L.K.; Geier, M.R. A review of Thimerosal (Merthiolate) and its ethylmercury breakdown product: Specific historical considerations regarding safety and effectiveness. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10, 575–596. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.K.; Haley, B.E.; Geier, D.A.; Sykes, L.K.; King, P.G.; Geier, M.R. Thimerosal exposure and the role of sulfation chemistry and thiol availability in autism. Int. J. Environ. Res. Public Health 2013, 10, 3771–3800. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Advisory Committee on Vaccine Safety, June 2012. Wkly. Epidemiol. Rec. 2012, 87, 277–288. [Google Scholar]
- Chhawchharia, R.; Puliyel, J.M. Controversies surrounding mercury in vaccines: Autism denial as impediment to universal immunization. Ind. J. Med. Ethics 2014, 11, 219–222. [Google Scholar]
- Shaw, C.A.; Kette, S.D.; Davidson, R.M.; Seneff, S. Aluminum’s role in CNS-immune system interactions leading to neurological disorders. Immunome Res. 2013, 9. [Google Scholar] [CrossRef]
- May, J.C.; Rains, T.C.; Maienthal, F.J.; Biddle, G.N.; Progar, J.J. A survey of the concentrations of eleven metals in vaccines, allergenic extracts, toxoids, blood, blood derivatives and other biological products. J. Biol. Stand. 1986, 14, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Migowski, E. Vacinas Riscos e Benefícios; Baxter Hospitalar Ltda.: São Paulo, Brazil, 2007; pp. 224–225. (In Potuguese) [Google Scholar]
- Wang, L.; Lei, D.; Zhangm, S. Acellular pertussis vaccines in China. Vaccine 2012, 30, 7174–7178. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Bernardi, J.V.E.; Dórea, J.G.; Moreira, M.F.R.; Malm, O. Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury, and aluminum) substances and neurodevelopment at six and 24 months of age. Env. Poll. 2014, 187, 130–135. [Google Scholar] [CrossRef]
- Vesikari, T.; Martin, J.C.; Liss, C.L.; Liska, V.; Schödel, F.P.; Bhuyan, P.K. Safety and immunogenicity of a modified process hepatitis B vaccine in healthy infants. Pediatr. Infect. Dis. J. 2011, 30, 109–113. [Google Scholar] [CrossRef]
- Ek, C.J.; Dziegielewska, K.M.; Habgood, M.D.; Saunders, N.R. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2012, 33, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Pichery, C.; Bellanger, M.; Zmirou-Navier, D.; Frery, N.; Cordier, S.; Roue-Legall, A.; Hartemann, P.; Grandjean, P. Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environ. Health 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Bal-Price, A.K.; Coecke, S.; Costa, L.; Crofton, K.M.; Fritsche, E.; Goldberg, A.; Grandjean, P.; Lein, P.J.; Li, A.; Lucchini, R.; et al. Advancing the science of developmental neurotoxicity (DNT): Testing for better safety evaluation. ALTEX 2012, 29, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.R. Toxicity of lead, cadmium, and mercury: Considerations for total parenteral nutritional support. Bull. N.Y. Acad. Med. 1984, 60, 196–209. [Google Scholar] [PubMed]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10. [Google Scholar] [CrossRef]
- Schetinger, M.R.; Bonan, C.D.; Morsch, V.M.; Bohrer, D.; Valentim, L.M.; Rodrigues, S.R. Effects of aluminum sulfate on delta-aminolevulinate dehydratase from kidney, brain, and liver of adult mice. Braz. J. Med. Biol. Res. 1999, 32, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.A.; Seneff, S.; Kette, S.D.; Tomljenovic, L.; Oller, J.W., Jr.; Davidson, R.M. Aluminum-induced entropy in biological systems: Implications for neurological disease. J. Toxicol. 2014. [Google Scholar] [CrossRef]
- Tomljenovic, L.; Shaw, C.A. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus 2012, 21, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G. Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem. Res. 2011, 36, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G. Low-dose mercury exposure in early life: Relevance of thimerosal to fetuses, newborns and infants. Curr. Med. Chem. 2013, 20, 4060–4069. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G. Exposure to mercury during the first six months via human milk and vaccines: Modifying risk factors. Amer. J. Perinatol. 2007, 24, 387–400. [Google Scholar] [CrossRef]
- Dórea, J.G.; Marques, R.C. Infants’ exposure to aluminum from vaccines and breast milk during the first 6 months. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Donangelo, C.M. Early (in uterus and infant) exposure to mercury and lead. Clin. Nutr. 2006, 25, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Exley, C. Human exposure to aluminium. Environ. Sci. Process Impacts 2013, 15, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Marques, R.C.; Brandão, K.G. Neonate exposure to thimerosal mercury from hepatitis B vaccines. Amer. J. Perinatol. 2009, 26, 523–527. [Google Scholar] [CrossRef]
- Keith, L.S.; Jones, D.E.; Chou, C.H. Aluminum toxicokinetics regarding infant diet and vaccinations. Vaccine 2002, 20, S13–S17. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E.; Gentile, A.; Giglio, N.; Umido, V.; Clarkson, T.; Cernichiari, E.; Zareba, G.; Gotelli, C.; Gotelli, M.; Yan, L.; et al. Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines. Pediatrics 2008, 121, 208–214. [Google Scholar] [CrossRef]
- Dórea, J.G.; Marques, R.C.; Abreu, L. Milestone achievement and neurodevelopment of rural Amazonian toddlers (12 to 24 months) with different methylmercury and ethylmercury exposure. J. Toxicol. Environ. Health Pt. A 2014, 77, 1–13. [Google Scholar] [CrossRef]
- Rooney, J.P. The retention time of inorganic mercury in the brain—A systematic review of the evidence. Toxicol. Appl. Pharmacol. 2014, 274, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Wimer, W.; Marques, R.C.; Shade, C. Automated speciation of mercury in the hair of breastfed infants exposed to ethylmercury from thimerosal-containing vaccines. Biol. Trace Elem. Res. 2011, 140, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Bezerra, V.L.; Fajon, V.; Horvat, M. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to thimerosal-containing vaccines. Clin. Chim. Acta 2011, 412, 1563–1566. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, D.; Schmidt, M.; Marques, R.C.; Dórea, J.G. Distribution of aluminum in hair of Brazilian infants and correlation to aluminum-adjuvanted vaccine exposure. Clin. Chim. Acta 2014, 428, 9–13. [Google Scholar] [CrossRef] [PubMed]
- McCance, R.A.; Widdowson, E.M. The chemical structure of the body. Q. J. Exp. Physiol. Cogn. Med. Sci. 1956, 41, 1–17. [Google Scholar] [PubMed]
- Dobbing, J.; Sands, J. Quantitative growth and development of human brain. Arch. Dis. Child. 1973, 48, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Fomon, S.J.; Haschke, F.; Ziegler, E.E.; Nelson, S.E. Body composition of reference children from birth to age 10 years. Amer. J. Clin. Nutr. 1982, 35, 1169–1175. [Google Scholar] [PubMed]
- Allegaert, K.; van den Anker, J.N.; Naulaers, G.; de Hoon, J. Determinants of drug metabolism in early neonatal life. Curr. Clin. Pharmacol. 2007, 2, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. Mucosal immunity: Integration between mother and the breast-fed infant. Vaccine 2003, 21, 3382–3388. [Google Scholar] [CrossRef] [PubMed]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.R.; Robinson, R.D.; Doherty, R.A. Effect of diet on mercury metabolism and excretion in mice given methylmercury: Role of gut flora. Arch. Environ. Health 1984, 39, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Kost, N.V.; Sokolov, O.Y.; Kurasova, O.B.; Dmitriev, A.D.; Tarakanova, J.N.; Gabaeva, M.V.; Zolotarev, Y.A.; Dadayan, A.K.; Grachev, S.A.; Korneeva, E.V.; et al. Beta-casomorphins-7 in infants on different type of feeding and different levels of psychomotor development. Peptides 2009, 30, 1854–1860. [Google Scholar] [CrossRef] [PubMed]
- Deth, R.C. Autism: A redox/methylation disorder. Glob. Adv. Health Med. 2013, 2, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Notarianni, L.J.; Oldham, H.G.; Bennett, P.N. Passage of paracetamol into breast milk and its subsequent metabolism by the neonate. Brit. J. Clin. Pharmacol. 1987, 24, 63–67. [Google Scholar] [CrossRef]
- Bunt, J.E.; Rietveld, T.; Schierbeek, H.; Wattimena, J.L.; Zimmermann, L.J.; van Goudoever, J.B. Albumin synthesis in preterm infants on the first day of life studied with [1–13C]leucine. Amer. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, 1157–1161. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, M.N.; Shahidullah, M.; Akhter, H. Pattern of change of weight following birth in the early neonatal period. Mymensingh Med. J. 2006, 15, 30–32. [Google Scholar] [PubMed]
- Macdonald, P.D.; Ross, S.R.; Grant, L.; Young, D. Neonatal weight loss in breast and formula fed infants. Arch. Dis. Child Fetal Neonatal. Ed. 2003, 88, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Dollberg, S.; Lahav, S.; Mimouni, F.B. A comparison of intakes of breast-fed and bottle-fed infants during the first two days of life. J. Amer. Coll. Nutr. 2001, 20, 209–211. [Google Scholar] [CrossRef]
- Elabiad, M.T.; Hook, R.E. Mercury content of blood transfusions for infants with extremely low birth weight. Pediatrics 2011, 128, 331–234. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Bernardi, J.V.; Dórea, J.G.; Leão, R.S.; Malm, O. Mercury transfer during pregnancy and breastfeeding: Hair mercury concentrations as biomarker. Biol. Trace Elem. Res. 2013, 154, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Bellieni, C.V.; Liuzzo, L.P.; Giomi, S.; Tei, M.; Stazzoni, G.; Bertrando, S.; Cornacchione, S.; Braconi, F.; Zurli, L.; Buonocore, G. C-reactive protein: A marker of neonatal stress? J. Matern. Fetal Neonatal. Med. 2014, 27, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Kapellou, O. Effect of caesarean section on brain maturation. Acta Paediatr. 2011, 100, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Gandra, Y.R.; Scrimshaw, N.S. Infection and nutritional status. II. Effect of mild virus infection induced by 17-D yellow fever vaccine on nitrogen metabolism in children. Amer. J. Clin. Nutr. 1961, 9, 159–163. [Google Scholar] [PubMed]
- Movsas, T.Z.; Paneth, N.; Rumbeiha, W.; Zyskowski, J.; Gewolb, I.H. Effect of routine vaccination on aluminum and essential element levels in preterm infants. JAMA Pediatr. 2013, 167, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Eales, S.J. Hepatitis B vaccine at birth-just another barrier to breastfeeding? Aust. Mid. 2003, 16, 4–5. [Google Scholar] [CrossRef]
- Lopez-Alarcon, M.; Garza, C.; Habicht, J.P.; Martinez, L.; Pegueros, V.; Villalpando, S. Breastfeeding attenuates reductions in energy intake induced by a mild immunologic stimulus represented by DPTH immunization: possible roles of interleukin-1beta, tumor necrosis factor-alpha and leptin. J. Nutr. 2002, 132, 1293–1298. [Google Scholar] [PubMed]
- Dórea, J.G.; Farina, M.; Rocha, J.B. Toxicity of ethylmercury (and Thimerosal): A comparison with methylmercury. J. Appl. Toxicol. 2013, 33, 700–711. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, C.T.; Nickle, R.; Faroon, O.; Jones, D.E. The impact of toxicology on public health policy and service: An update. Toxicol. Ind. Health 2003, 19, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Wang, J.; Zhang, J.; Li, S.J.; He, L.; Shao, D.D.; Du, H.Y. Effect of thimerosal on the neurodevelopment of premature rats. World J. Pediatr. 2013, 9, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qu, F.; Xie, W.; Wang, F.; Liu, H.; Song, S.; Chen, T.; Zhang, Y.; Zhu, S.; Wang, Y.; et al. Transcriptomic analyses of neurotoxic effects in mouse brain after intermittent neonatal administration of thimerosal. Toxicol. Sci. 2014, 139, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Branch, D.R. Gender-selective toxicity of thimerosal. Exp. Toxicol. Pathol. 2009, 61, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Cernichiari, E.; Myers, G.J.; Ballatori, N.; Zareba, G.; Vyas, J.; Clarkson, T. The biological monitoring of prenatal exposure to methylmercury. Neurotoxicology 2007, 28, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.F.H.; Oliveira Souza, J.M.; Grotto, D.; Batista, B.L.; de Oliveira Souza, V.C.; Barbosa, F., Jr. A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). Environ. Res. 2014, 134, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Zareba, G.; Cernichiari, E.; Hojo, R.; Nitt, S.M.; Weiss, B.; Mumtaz, M.M.; Jones, D.E.; Clarkson, T.W. Thimerosal distribution and metabolism in neonatal mice: Comparison with methyl mercury. J. Appl. Toxicol. 2007, 27, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Harry, G.J.; Harris, M.W.; Burka, L.T. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol. Lett. 2004, 154, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G. Premature and neonate modeling of Thimerosal exposure and neurodevelopment: Additional comments. World J. Pediatr. 2014, 10, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Burbacher, T.M.; Shen, D.D.; Liberato, N.; Grant, K.S.; Cernichiari, E.; Clarkson, T. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ. Health Perspect. 2005, 113, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2007, 22, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.; Bohrer, D.; Banderó, C.R.; Oliveira, S.M.; do Nascimento, P.C.; Mattiazzi, P.; Mello, C.F.; Lenz, Q.F.; Oliveira, M.S. Accumulation, elimination, and effects of parenteral exposure to aluminum in newborn and adult rats. J. Inorg. Biochem. 2013, 128, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Combadiere, C.; Authier, F.J.; Itier, V.; Lux, F.; Exley, C.; Mahrouf-Yorgov, M.; Decrouy, X.; Moretto, P.; Tillement, O.; et al. Slow CCL2- dependent translocation of biopersistent particles from muscle to brain. BMC Med. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Shaw, C.A.; Tomljenovic, L. Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes. J. Inorg. Biochem. 2013, 128, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Arango, M.T.; Kivity, S.; Katzav, A.; Gilburd, B.; Blank, M.; Tomer, N.; Volkov, A.; Barshack, I.; Chapman, J.; et al. Immunization with hepatitis B vaccine accelerates SLE-like disease in a murine model. J. Autoimmun. 2014. [Google Scholar] [CrossRef]
- Dórea, J.G. Making sense of epidemiological studies of young children exposed to thimerosal in vacines. Clin. Chim. Acta 2010, 411, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Clements, C.J. The evidence for the safety of thiomersal in newborn and infant vaccines. Vaccine 2004, 22, 1854–1861. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; Marques, R.C.; Isejima, C. Neurodevelopment of Amazonian infants: Antenatal and postnatal exposure to methyl- and ethylmercury. J. Biomed. Biotechnol. 2012. [Google Scholar] [CrossRef]
- Lee, B.E.; Ha, E.H. Response to commentary “Co-exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy”. Environ. Res. 2012, 112. [Google Scholar] [CrossRef] [PubMed]
- Mrozek-Budzyn, D.; Majewska, R.; Kieltyka, A.; Augustyniak, M. Neonatal exposure to Thimerosal from vaccines and child development in the first 3 years of life. Neurotoxicol. Teratol. 2012, 34, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Mrozek-Budzyn, D.; Majewska, R.; Kiełtyka, A. Early exposure to thimerosal-containing vaccines and children’s cognitive development. A 9-year prospective birth cohort study in Poland. Eur. J. Pediatr. 2014. [Google Scholar] [CrossRef]
- De Burbure, C.; Buchet, J.P.; Leroyer, A.; Nisse, C.; Haguenoer, J.M.; Mutti, A.; Smerhovsky, Z.; Cikrt, M.; Trzcinka-Ochocka, M.; Razniewska, G.; et al. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environ. Health Perspect. 2006, 114, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Wright, R.O.; Birnbaum, L.S. Mercury toxicity in children. Science 2013, 342. [Google Scholar] [CrossRef]
- Grandjean, P.; Herz, K.T. Methylmercury and brain development: Imprecision and underestimation of developmental neurotoxicity in humans. Mt. Sinai J. Med. 2011, 78, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Geier, D.A.; Kern, J.K.; Hooker, B.S.; King, P.G.; Sykes, L.K.; Geier, M.R. Thimerosal-containing Hepatitis B vaccination and the risk for diagnosed specific delays in development in the United States: A case-control study in the Vaccine Safety Datalink. North Amer. J. Med. Sci. 2014, 6, 519–531. [Google Scholar] [CrossRef]
- Geier, D.A.; Hooker, B.S.; Kern, J.K.; King, P.G.; Sykes, L.K.; Homme, K.G.; Geier, M.R. A dose-response relationship between organic mercury exposure from Thimerosal-containing vaccines and neurodevelopmental disorders. Int. J. Environ. Res. Public Health 2014, 11, 9156–9170. [Google Scholar] [CrossRef] [PubMed]
- Young, H.A.; Geier, D.A.; Geier, M.R. Thimerosal exposure in infants and neurodevelopmental disorders: An assessment of computerized medical records in the Vaccine Safety Datalink. J. Neurol. Sci. 2008, 271, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Geier, D.A.; Geier, M.R. A two-phased population epidemiological study of the safety of thimerosal-containing vaccines: A follow-up analysis. Med. Sci. Monit. 2005, 11, 160–170. [Google Scholar]
- Gallagher, C.; Goodman, M. Hepatitis B triple series vaccine and developmental disability in US children aged 1–9 years. Toxicol. Environ. Chem. 2008, 90, 997–1008. [Google Scholar] [CrossRef]
- Verstraeten, T.; Davis, R.L.; DeStefano, F.; Lieu, T.A.; Rhodes, P.H.; Black, S.B.; Shinefield, H.; Chen, R.T. Safety of thimerosal-containing vaccines: A two-phased study of computerized health maintenance organization databases. Pediatrics 2003, 112, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Miller, E.; Grant, A.; Stowe, J.; Osborne, V.; Taylor, B. Thimerosal exposure in infants and developmental disorders: A retrospective cohort study in the United Kingdom does not support a causal association. Pediatrics 2004, 114, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Hooker, B.S.; Kern, J.K.; Geier, D.A.; Haley, B.E.; Sykes, L.K.; King, P.G.; Geier, M.R. Methodological issues and evidence of malfeasance in research purporting to show Thimerosal in vaccines is safe. Biomed. Res. Int. 2014. [Google Scholar] [CrossRef]
- Dórea, J.G. Concern regarding early exposure to thiomersal and mercury poisoning: Comment on the article by Bensefa-Colas et al. Rev. Med. Interne 2012, 33, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, A.T.; Dzagurov, S.G.; Chervonskaia, G.P. Evaluation of the toxic action of prophylactic and therapeutic preparations on cell cultures. III. The detection of toxic properties in medical biological preparations by the degree of cell damage in the L132 continuous cell line. Zh. Mikrobiol. Epidemiol. Immunobiol. 1983, 3, 87–92. [Google Scholar] [PubMed]
- Exley, C. When an aluminium adjuvant is not an aluminium adjuvant used in human vaccination programmes. Vaccine 2012, 30. [Google Scholar] [CrossRef] [PubMed]
- Hem, S.L. Elimination of aluminum adjuvants. Vaccine 2002, 20, S40–S43. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, R.K.; Coquet, M.; Chérin, P.; Authier, F.J.; Laforêt, P.; Bélec, L.; Figarella-Branger, D.; Mussini, J.M.; Pellissier, J.F.; Fardeau, M. Macrophagic myofasciitis: An emerging entity. Lancet 1998, 352, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Rivas, E.; Gómez-Arnáiz, M.; Ricoy, J.R.; Mateos, F.; Simón, R.; García-Peñas, J.J.; Martín, E.; Garcia-Silva, M.T.; Vázquez, M.; Ferreiro, A.; et al. Macrophagic myofasciitis in childhood: A controversial entity. Pediatr. Neurol. 2005, 33, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Bergfors, E.; Trollfors, B. Sixty-four children with persistent itching nodules and contact allergy to aluminium after vaccination with aluminium-adsorbed vaccines-prognosis and outcome after booster vaccination. Eur. J. Pediatr. 2013, 172, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Bergfors, E.; Hermansson, G.; Nyström Kronander, U.; Falk, L.; Valter, L.; Trollfors, B. How common are long-lasting, intensely itching vaccination granulomas and contact allergy to aluminium induced by currently used pediatric vaccines? A prospective cohort study. Eur. J. Pediatr. 2014, 173, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Lisciandro, J.G.; Prescott, S.L.; Nadal-Sims, M.G.; Devitt, C.J.; Pomat, W.; Siba, P.M.; Tulic, M.C.; Holt, P.G.; Strickland, D.; van den Biggelaar, A.H. Ontogeny of Toll-like and NOD-like receptor-mediated innate immune responses in Papua New Guinean infants. PLoS One 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Terhune, T.D.; Deth, R.C. A role for impaired regulatory T cell function in adverse responses to aluminum adjuvant-containing vaccines in genetically susceptible individuals. Vaccine 2014, 32, 5149–5155. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.F.; Heath, M.D. Aluminium in allergen-specific subcutaneous immunotherapy—A German perspective. Vaccine 2014, 32, 4140–4148. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Bernardi, J.V.; Dórea, J.G.; Bastos, W.R.; Malm, O. Principal component analysis and discrimination of variables associated with pre- and post-natal exposure to mercury. Int. J. Hyg. Environ. Health 2008, 211, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Dórea, J.G.; Bernardi, J.V.; Bastos, W.R.; Malm, O. Prenatal and postnatal mercury exposure, breastfeeding and neurodevelopment during the first 5 years. Cogn. Behav. Neurol. 2009, 22, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Dórea, J.G.; Bernardi, J.V. Thimerosal exposure (from tetanus-diphtheria vaccine) during pregnancy and neurodevelopment of breastfed infants at 6 months. Acta Paediatr. 2010, 99, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Dórea, J.G.; McManus, C.; Leão, R.S.; Brandão, K.G.; Marques, R.C.; Vieira, I.H.; Guimarães, J.R.; Malm, O. Hydroelectric reservoir inundation (Rio Madeira Basin, Amazon) and changes in traditional lifestyle: Impact on growth and neurodevelopment of pre-school children. Public Health Nutr. 2011, 14, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Dórea, J.G.; Leão, R.S.; Dos Santos, V.G.; Bueno, L.; Marques, R.C.; Brandão, K.G.; Palermo, E.F.; Guimarães, J.R. Role of methylmercury exposure (from fish consumption) on growth and neurodevelopment of children under 5 years of age living in a transitioning (tin-mining) area of the western Amazon, Brazil. Arch. Environ. Contam. Toxicol. 2012, 62, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.; Bernardi, J.V.E.; Dórea, J.G.; Abreu, L. Neurodevelopment outcomes in children exposed to organic mercury from multiple sources in a tin-ore mine environment in Brazil. Arch. Env. Contam. Toxicol. 2014. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dórea, J.G. Exposure to Mercury and Aluminum in Early Life: Developmental Vulnerability as a Modifying Factor in Neurologic and Immunologic Effects. Int. J. Environ. Res. Public Health 2015, 12, 1295-1313. https://doi.org/10.3390/ijerph120201295
Dórea JG. Exposure to Mercury and Aluminum in Early Life: Developmental Vulnerability as a Modifying Factor in Neurologic and Immunologic Effects. International Journal of Environmental Research and Public Health. 2015; 12(2):1295-1313. https://doi.org/10.3390/ijerph120201295
Chicago/Turabian StyleDórea, José G. 2015. "Exposure to Mercury and Aluminum in Early Life: Developmental Vulnerability as a Modifying Factor in Neurologic and Immunologic Effects" International Journal of Environmental Research and Public Health 12, no. 2: 1295-1313. https://doi.org/10.3390/ijerph120201295
APA StyleDórea, J. G. (2015). Exposure to Mercury and Aluminum in Early Life: Developmental Vulnerability as a Modifying Factor in Neurologic and Immunologic Effects. International Journal of Environmental Research and Public Health, 12(2), 1295-1313. https://doi.org/10.3390/ijerph120201295