Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential
Abstract
:1. Introduction
CAS No. | 3380-34-5 |
---|---|
Structure | |
Molecular formula | C12H7Cl3O2 |
Trade name | Irgasan DP 300, FAT 80′023, CH 3565, GP41-353, Irgacare MP (the pharmaceutical grade of TCS, >99% pure) and Ster-Zac |
General classification | Non-prescription compound |
Possible use | Antimicrobial, antiseptic and disinfectant |
Nature | Hydrophobic |
Molecular weight | 289.54 |
Dissociation constant (pKa) (20 °C) | 8.14 |
Henry constant (Hc) (atm mol−1·m−3) | 1.5 × 10−7 (25 °C) |
Octanol-water Partition coefficient (log Kow) | 4.76 |
Sorption coefficient (Koc) | 18408 |
Solubility | 12 mg·L−1 (25 °C) |
Vapor pressure | 5.2 × 10−6 Pa (mm Hg at 20 °C) |
Bioconcentration factor (BCF)- | 2.7–90 (aquatic organisms) |
Photodegradation (half-life in aqueous solution) | 41 min |
Biodegradation (half-life in aerobic soil) | 18 days |
Biodegradation (anaerobic condition) | No degradation within 70 days |
Degradation products of TCS | Methyl TCS, dioxins, chlorophenols, chloroform |
2. Physico-Chemical Properties of TCS Affecting Removal
Physico-Chemical Property | Removal Potential of TCS |
---|---|
Adsorption potential | |
Log Kow ≤ 2.5 | Low sorption potential |
2.5 < Log Kow < 4 | Medium sorption potential |
Log Kow ≤ 4 | High sorption potentialTCS |
Volatilization potential | |
Hc > 1 × 104 and Hc/Log Kow >1 × 109 | High volatization potential |
Hc < 1 × 104 and Hc/Log Kow <1 × 109 | Low volatization potentialTCS |
3. Current Scenario of TCS Use and Safety
Type of TCS-Based Product | TCS Concentration (%) | Reference |
---|---|---|
Oral care products | ||
Toothpaste | 0.3 | [29] |
Mouth wash solutions | 0.03 | [31] |
Dermally applied products (rinse off) | ||
Skin cleansers | 0.3 | [28] |
Liquid hand soap | 0.1–0.45 | [32] |
Dishwashing detergent | 0.1 | [30] |
Dermally applied products (leave on) | ||
Body lotion | 0.3 | [28] |
Facial Moisturizer | 0.3 | [28] |
Deodorant/antiperspirants | 0.3 | [28] |
Target Microorganisms | Effective Concentrations | Reference |
---|---|---|
Most sensitive strains | ||
Staphylococci, some Streptococci, some mycobacteria, Escherichia coli, Klebsiella pneumonia, Klebsiella spp., Enterobacter spp., Acinetobacter spp., Proteus spp. and Proteus mirabilis, Plasmodium falciparum, Toxoplasma gondii | 0.01 mg·L−1 to 0.1 mg·L−1 | [33] [19] |
Less sensitive strains | ||
Methicillin-resistant Staphylococcus aureus (MRSA) strains | 0.1–2 mg·L−1 | [40,142] |
Enterococci | - | [49] |
Highly resistant strains | ||
Pseudomonas aeruginosa, Clostridium difficile | - | [49,143] |
4. Emergence of Microbial Resistance to TCS
5. Toxicity of TCS
5.1. Toxicity in Humans
5.2. Toxicity in Animals and Other Organisms
6. Occurrence of TCS in Aquatic and Terrestrial Environment
Source | Sampling Source | Country | Concentration of TCS | Reference |
---|---|---|---|---|
Surface waters | Natural streams/rivers | USA | Up to 2.3 μg·L−1 | [88,108] |
Switzerland | 0.074 μg·L−1 | [111] | ||
Germany | 0.01 μg·L−1 | [4] | ||
Australia | 0.075 μg·L−1 | [112] | ||
Japan China | 0.0006–0.0059 μg·L−1 0.011–0.478 μg·L−1 | [144] [113] | ||
Streams with inputs of raw wastewater | Switzerland | 0.011–0.098 μg·L−1 | [6] | |
USA | 1.6 μg·L−1 | [5] | ||
Estuarine waters | USA | 0.0075 μg·L−1 | [143] | |
Sediment | Fresh water | Switzerland | 53 μg·kg−1 | [6] |
Spain | 35.7 μg·kg−1 | [122] | ||
Estuarine | USA | 800 μg·kg−1 | [117] | |
Marine River water | Spain China | 0.27–130.7 μg·kg−1 50–1330 μg·kg−1 | [145] [114] |
7. Degradation of TCS
Organisms | Species/Sample Type | Sampling Site | TCS (μg·kg−1) | Reference |
---|---|---|---|---|
Algae | Filamentous algae (Cladophora spp.)/Whole organism | Receiving stream for the city of Denton (TX, USA) WWTP | (1) 100–150
(2) 50–400 | [146] [144] |
Invertebrates | Freshwater snails (Helisoma trivolvis)/Muscle | Receiving stream for the city of Denton (TX, USA) WWTP | 50–300 | [144] |
Vertebrates | Rainbow trout (Oncorhynchus mykiss)/Bile | (1) Upstream from WWTP, Sweden (caged);
(2) downstream 2 km from WWTP (caged) | (1) 710
(2) 17,000 | [20] |
Breams, male (Abramis brama) (1) Bile (2) Muscle | (1) River sites (Netherlands)
(2) River sites (Germany) | (1) 14,000–80,000
(2) 0.25–3.4 | [147] [148] | |
Pelagic fish/Plasma | Detroit River (USA) | 0.75–10 | [149] | |
Atlantic bottlenose dolphins ( Tursiops truncates)/Plasma | (1) Estuary, South Carolina
(2) Estuary, Florida | (1) 0.12–0.27
(2) 0.025–0.11 | [150] | |
Killer whale (Orcinus orca)/Plasma | Vancouver Aquarium Marine Science Centre | 9.0 | [150] |
8. Conclusions and Future Prospects
Acknowledgments
Author Contributions
Abbreviations List
AMA | American Medical Association |
APHA | American Public Health Association |
CDC | Centers for Disease Control and Prevention |
CTDs | Chlorinated derivatives |
2,8-DCDD | 2,8-dichlorodibenzo-p-dioxin |
2,4-DCP | 2,4-dichlorophenol |
2,4-TCP | 2,4,6-trichlorophenol |
ECs | Emerging contaminants |
EDCs | Endocrine disrupting compounds |
EPA | Environmental Protection Agency |
ENR | Enoyl-acyl carrier protein reductase enzyme |
EU | European Union |
FDA | Food and Drug Administration |
MIC | Minimum inhibitory concentrations |
MRSA | Methicillin-resistant Staphylococcus aureus |
NHANES | National Health and Nutrition Examination Survey |
PACD | Photo allergic contact dermatitis |
PCBs | Polychlorinated biphenyls |
PCDDs | polychlorinated dibenzo-p-dioxins (dioxins) |
PCDFs | polychlorinated-dibenzofurans (dibenzofurans) |
PCPs | Personal care products |
PhACs | Pharmaceutically active compounds |
POPs | Persistent organic pollutants |
ROS | Reactive oxygen species |
TCDD | 2,3,7,8-tetrachlorodibenzo-p-dioxin |
TCS | Triclosan |
USEPA | United States environmental protection agency |
WWTPs | Wastewater treatment plants |
xxxxx | xxxxxxx |
Conflicts of Interest
References
- Ciba Speciality Chemicals. General Information on Chemical, Physical and Microbiological Properties of Irgasan DP300, Irgacare MP and Irgacide LP10, Brochure 2520; Ciba Speciality Chemicals: Basel, Switzerland, 2001. [Google Scholar]
- Ahn, K.C.; Zhao, B.; Chen, J.; Cherednichenko, G.; Sanmarti, E.; Denison, M.S.; Lasley, B.; Pessah, I.N.; Kültz, D.; Chang, D.P.Y.; et al. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environ. Health Persp. 2008, 116, 1203–1210. [Google Scholar] [CrossRef]
- Allmyr, M.; Harden, F.; Toms, L.M.L.; Mueller, J.F.; McLachlan, M.S.; Adolfsson-Erici, M.; Sandborgh-Englund, G. The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci. Total Environ. 2008, 393, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Bester, K. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch. Environ. Contam. Toxicol. 2005, 49, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Halden, R.U.; Paul, D.H. Co-occurence of triclocarban and triclosan in U. S. water resources. Environ. Sci. Technol. 2005, 39, 1420–1426. [Google Scholar] [CrossRef]
- Singer, H.; Muller, S.; Tixier, C.; Pillonel, L. Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002, 36, 4998–5004. [Google Scholar] [CrossRef] [PubMed]
- McBain, A.J.; Rickard, A.H.; Gilbert, P. Possible implications of biocide accumulation in the environment on the prevalence of bacterial antibiotic resistance. J. Indus. Microbiol. Biotechnol. 2002, 29, 326–330. [Google Scholar] [CrossRef]
- Sabaliunas, D.; Webb, S.F.; Hauk, A.; Jacob, M.; Eckhoff, W.S. Environmental fate of triclosan in the River Aire Basin, UK. Water Res. 2003, 37, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Bock, M.; Lyndall, J.; Barber, T.; Fuchsman, P.; Perruchon, E.; Capdevielle, M. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment. Integr. Environ. Assess Manag. 2010, 6, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Bester, K. Triclosan in a sewage treatment process—Balances and monitoring data. Water Res. 2003, 37, 3891–3896. [Google Scholar] [CrossRef] [PubMed]
- ICON, 2001. Pollutants in Urban Waste Water and Sewage Sludge. Available online: http://ec.europa.eu/environment/waste/sludge/sludge_pollutants.pdf (accessed on 14 May 2015).
- McAvoy, D.C.; Schatowitz, B.; Jacob, M.; Hauk, A.; Eckhoff, W.S. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 2002, 21, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Fuchsman, P.; Lyndall, J.; Bock, M.; Lauren, D.; Barber, T.; Leigh, K.; Perruchon, E.; Capdevielle, M. Terrestrial ecological risk evaluation for triclosan in land-applied biosolids. Integr. Environ. Assess. Manag. 2010, 6, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Chalew, T.E.A.; Halden, R.U. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J. Am. Water Resour. Assoc. 2009, 45, 4–13. [Google Scholar] [CrossRef]
- Adolfsson-Erici, M.; Patterson, M.; Parkkonen, J.; Sturve, J. Triclosan, A Commonly Used Bactericide Found in Human Milk and in the Aquatic Environment. In Proceedings of the Abstracts of Dioxin,2000: 20th International Symposium on Halogenated Environmental Organic Pollutants and POP’s, Monterey, CA, USA, 13–17 August 2000; Volume 48.
- Chu, S.; Metcalfe, C.D. Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry. J. Chromatogr. 2007, 1164, 212–218. [Google Scholar] [CrossRef]
- Reiss, R.; Lewis, G.; Griffin, J. An ecological risk assessment for triclosan in the terrestrial environment. Environ. Toxicol. Chem. 2009, 28, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Buth, J.M.; Steen, P.O.; Sueper, C.; Blumentritt, D.; Vikesland, P.J.; Arnold, W.A.; McNeill, K. Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. Environ. Sci. Technol. 2010, 44, 4545–4551. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, H.P. Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001, 202, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson-Erici, M.; Pettersson, M.; Parkkonen, J.; Sturve, J. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 2002, 46, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Latch, D.E.; Packer, J.L.; Arnold, W.A.; McNeill, K. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A Chem. 2003, 158, 63–66. [Google Scholar] [CrossRef]
- Jones, R.D.; Jampani, H.B.; Newman, J.L.; Lee, A.S. Triclosan: A review of effectiveness and safety in health care settings. Am. J. Infect. Control 2000, 28, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Rodricks, J.V.; Swenberg, J.A.; Borzelleca, J.F.; Maronpot, R.R.; Shipp, A.M. Triclosan: A critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol. 2010, 40, 422–484. [Google Scholar] [CrossRef] [PubMed]
- Aranami, K.; Readman, J.W. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 2007, 66, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, A.; Buerge, I.J.; Poiger, T.; Bergqvist, P.; Muller, M.D.; Buser, H. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ. Sci. Technol. 2002, 36, 2322–2329. [Google Scholar] [CrossRef] [PubMed]
- USEPA. 2003, Toxic Control Act Chemical Substance Inventory: Factsheet Triclosan. USEPA: Boston, USA. Available online: http://www.epa.gov/oppsrrd1/REDs/factsheets/triclosan_fs.htm (accessed on 22 May 2015).
- FDA. Letter to Jay Feldman of Beyond Pesticides from Steven Galson of the Federal Drug Administration. Docket no. 2005P-0432/CP 1; FDA: Silver Spring, MD, USA, 2006. [Google Scholar]
- EU. Cosmetics Directive 76/768//EEC, Annex VI, Part I, Entry 25. List of Preservatives which Cosmetic Products may Contain. 2007. Available online: http://ec.europa.eu/enterprise/cosmetics/cosing/index.cfm?fuseaction=search.results&annex=VI&search (accessed on 1 January 2015).
- FDA. New Drug Application for Colgate Total NDA 020231. 1997. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search/Drug Details (accessed on 2 May 2015). [Google Scholar]
- NIH. Household Products Database. 2007. Available online: http://hpd.nlm.nih.gov/cgi-bin/household/brands?tbl=chem&id=201&query=triclosan&searchas=TblChemicals gov/cgi-bin/household/brands?tbl=chem&id=201&query=triclosan&searchas=TblChemicals (accessed on 14 May 2015). [Google Scholar]
- Lin, Y. Buccal absorption of triclosan following topical mouth rinse application. Am. J. Dent. 2000, 13, 215–217. [Google Scholar] [PubMed]
- Lambert, R.J.W.; Graf, J.F.; Sedlak, R.I. Antimicrobial resistance and cross-resistance in several bacterial species between 1989 and 2000. In Program and Abstracts of the Forty-Second Interscience. In Proceedings of the Conference Antimicrobial Agents Chemotherapy, San Diego, CA, USA, 27–30 September 2002.
- FDA. Topical antimicrobial drug products for over-the-counter human use: Tentative final monograph for health care antiseptic drug products. Fed. Regist. 1994, 59, 31402–31452. [Google Scholar]
- McLeod, R.; Muench, S.P.; Rafferty, J.B. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicompexan FabI. Int. J. Parasitol. 2001, 31, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.W.; Roujeinikova, A.; Sedelnikova, S. Molecular basis of triclosan activity. Nature 1999, 398, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Brady, L.; Thomson, M.; Palmer, M.; Harkness, J. Successful control of endemic MRSA in a cardiothoracic surgical unit. Med. J. Aust. 1990, 152, 240–245. [Google Scholar] [PubMed]
- Zafar, A.; Butler, R.; Reese, D.; Gaydos, L.; Mennonna, P. Use of 0.3% triclosan (Bacti-Stat) to eradicate an outbreak of methicillin-resistant Staphylococcus aureus in a neonatal nursery. Am. J. Infect. Control 1995, 23, 200–208. [Google Scholar]
- Coia, J.; Duckworth, G.; Edwards, D.; Farrington, M.; Fry, C.; Humphreys, H.; Mallaghan, C.; Tucker, D. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect. 2006, 63, S1–S44. [Google Scholar] [CrossRef] [PubMed]
- Tuffnell, D.J.; Croton, R.S.; Hemingway, D.M.; Hartley, M.N.; Wake Garvey, P.N.R.J. Methicillin resistant Staphylococcus aureus; The role of antisepsis in the control of an outbreak. J. Hosp. Infect. 1987, 10, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Suller, M.T.E.; Russell, A.D. Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. J. Hosp. Infect. 1999, 43, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Triclosan, White Paper Prepared by The Alliance for the Prudent Use of Antibiotics (APUA). January 2011. Available online: http://www.tufts.edu/med/apua/consumers/personal_home_21_4240495089.pdf (accessed on 1 May 2015).
- Russell, A.D. Biocide usage and antibiotic resistance: The relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 2003, 3, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Sasatsu, M.; Shirai, Y.; Hase, M.; Noguchi, N.; Kono, M.; Behr, H.; Freney, J.; Arai, T. The origin of the antiseptic-resistance gene ebr in Staphylococcus aureus. Microbios 1995, 84, 161–169. [Google Scholar] [PubMed]
- McMurry, L.M.; Oethinger, M.; Levy, S.B. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett. 1998, 166, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Escalada, M.; Maillard, J.Y.; Russell, A.D. Effects of triclosan-sensitive and resistant strains of Gram-negative bacteria. Soc. Appl. Microbiol. 2001, 30, 9–12. [Google Scholar]
- Russell, A.D. Whither triclosan? J. Antimicrob. Chemother. 2004, 53, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.; Moreno, E.; Martinez, J.L. The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob. Agents Chemother. 2005, 49, 781–782. [Google Scholar] [CrossRef] [PubMed]
- Chuanchen, R.; Beinlich, K.; Hoang, T.T.; Becher, A.; karkhoff-Schweizer, R.R.; Schweizer, H.P. Cross-resistance between triclosan and antibiotics is mediated by multidrug efflux pumps: Exposure of a susceptible mutant strain to triclosan selects NFXB mutants overexpressing MexCD-Opr. J. Antimicrob. Agents Chemother. 2001, 45, 428–432. [Google Scholar] [CrossRef]
- Russell, A.D. Similarities and differences in the responses of microorganisms to biocides. J. Antimicrob. Chemother. 2003, 52, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.J.; White, S.W.; Rock, C.O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 2001, 40, 467–497. [Google Scholar] [CrossRef] [PubMed]
- Beinlich, K.I.; Chuanchen, R.; Schweizer, H.P. Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary isolates of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2001, 198, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Chuanchen, R.; Karkhoff-Schweizer, R.R.; Schweizer, H.P. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am. J. Inf. Control. 2003, 31, 124–127. [Google Scholar]
- Bamber, A.I.; Neal, T.J. An assessment of triclosan susceptibility in methicillin-resistant and methicillin-sensitive Staphylococcus aureus. J. Hosp. Inf. 1999, 41, 107–109. [Google Scholar] [CrossRef]
- Fan, F.; Yan, K.; Wallis, G.S.; Reed, S.; Moore, T.D.; Rittenhouse, S.F.; deWolf, W.E. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 3343–3347. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 2002, 49, 25–30. [Google Scholar] [CrossRef] [PubMed]
- McMurry, L.M.; Oethinger, M.; Levy, S.B. Triclosan targets lipid synthesis. Nature 1998, 394, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D. Mechanisms of antimicrobial action of antiseptics and disinfectants: An increasingly important area of investigation. J. Antimicr. Chemother. 2002, 49, 597–599. [Google Scholar] [CrossRef]
- Levy, S.B. Antibacterial household products: Cause for concern. Emerg. Infect. Dis. 2001, 7, 512–515. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; McDermott, P.F. Biocides, drug resistance and microbial evolution. Curr. Opin. Microbiol. 2001, 4, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; McBain, A.J. Biocide usage in the domestic setting and concern about antibacterial and antibiotic resistance. J. Infect. 2001, 43, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.M.; Robleto, E.; Dumont, T.; Billhim, W.; Wiandt, K.; Keswick, B.; Levy, S.B. The Frequency of Bacteria and Antibiotic Resistance in Homes that Use and Do Not Use Surface Antibacterial Agents. In Proceedings of the 103rd General Meeting of the American Society for Microbiology, Washington, DC, USA, 18–22 May 2003.
- Cole, E.C.; Addison, R.M.; Rubino, J.R.; Leese, K.E.; Dulaney, P.D.; Newell, M.S.; Wilkins, J.; Gaber, D.J.; Wineinger, T.; Criger, D.A. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J. Appl. Microbiol. 2003, 95, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel. Laboratory and clinical evidence documenting the microbiologic safety of Colgate Total®. Biol. Ther. Dent. 2000, 16, 17–20.
- McBain, A.J.; Ledder, R.G.; Sreenivasan, P.; Gilbert, P. Selection for high-level resistance by chronic triclosan exposure is not universal. J. Antimicrob. Chemother. 2004, 53, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Health Council of The Netherlands. Disinfectants in Consumer Products. Publication No. 2001/05E; Health Council of The Netherlands: The Hague, The Netherlands, 2001. [Google Scholar]
- Russell, A.D. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J. Hosp. Inf. 2004, 57, 97–104. [Google Scholar] [CrossRef]
- Tan, L.; Nielsen, N.H.; Young, D.C. Use of antimicrobial agents in consumer products. Arch. Dermatol. 2002, 138, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Cookson, B. Clinical significance of emergence of bacterial antimicrobial resistance in the hospital environment. J. Appl. Microbiol. 2005, 99, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Courtney, K.D.; Moore, J.A. Teratology studies with 2,4,5-trichlorophenoxyacetic acid and 2,3,7,8-tetrachlorodibenzo-P-dioxin. Toxicol. Appl. Pharmacol. 1971, 20, 396–403. [Google Scholar] [CrossRef] [PubMed]
- NICNAS (National Industrial Chemicals Notification and Assessment Scheme), Australia. 2009. In Priority Existing Chemical Assessment Report No. 30, Triclosan; 2009. Available online: http://www.nicnas.gov.au/publications/car/pec/pec30.asp (accessed on 11 May 2015).
- Allmyr, M.; Adolfsson-Erici, M.; McLachlan, M.S.; Sandborgh-Englund, G. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 2006, 372, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Dayan, A.D. Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chem. Toxicol. 2007, 45, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Robertshaw, H.; Leppard, B. Contact dermatitis to triclosan in toothpaste, Contact. Dermatitis. 2007, 57, 383–384. [Google Scholar] [CrossRef]
- Schena, D.; Papagrigoraki, A.; Girolomoni, G. Sensitizing potential of triclosan and triclosan-based skin care products in patients with chronic eczema. Dermatol Ther. 2008, 2, S35–S38. [Google Scholar] [CrossRef]
- Wolff, M.; Teitelbaum, S.; Windham, G.; Pinney, S.; Britton, J.; Chelimo, C.; Godbold, J.; Biro, F.; Kushi, L.; Pfeiffer, C.; et al. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ. Health Perspect. 2007, 115, 116–121. [Google Scholar]
- Calafat, A.; Ye, X.; Wong, L.; Reidy, J.; Needham, L. Urinary concentrations of triclosan in the U. S. population: 2003–2004. Environ. Health Perspect. 2008, 116, 303–307. [Google Scholar]
- CDC. National Health and Nutrition Examination Survey—NHANES 2003–2004; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2005. Available online: http://www.cdc.gov/nchs/nhanes/nhanes2003–2004/nhanes 03_04.htm (accessed on 14 May 2015).
- Fiss, E.M.; Rule, K.L.; Vikesland, P.J. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environ. Sci. Technol. 2007, 41, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Parker, B.; Knapp, M. In vitro stability of triclosan in dentifrice under simulated use condition. Int. J. Cosmet. Sci. 2007, 29, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Daniel, O.; Nicole, D. Identification and Evaluation of Unidentified Organic Contaminants in the San Francisco Estuary, San Francisco Estuary Regional Monitoring Program for Trace Substances; SFEI Contribution 45, San Francisco Estuary Institute: Oakland, CA, USA, 2002. [Google Scholar]
- Miller, T.L.; Lorusso, D.J.; Walsh, M.L.; Deinzer, M.L. The acute toxicity of penta-, hexa-, and heptachlorohydroxydiphenyl ethers in mice. J. Toxicol. Environ. Health 1983, 12, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Veldhoen, N.; Skirrow, R.C.; Osachoff, H.; Wigmore, H.; Clapson, D.J.; Gunderson, M.P.; van Aggelen, G.; Helbing, C.C. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat. Toxicol. 2006, 80, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chakraborty, A.; Kural, M.R.; Roy, P. Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod. Toxicol. 2009, 27, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Foran, C.M.; Bennett, E.R.; Benson, W.H. Developmental evaluation of a potential non-steroidal estrogen: Triclosan. Mar. Environ. Res. 2000, 50, 153–156. [Google Scholar] [CrossRef] [PubMed]
- James, M.O.; Li, W.; Summerlot, D.P.; Rowland-Faux, L.; Wood, C.E. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ. Int. 2010, 36, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Yueh, M.F.; Taniguchi, K.; Chen, S.; Evans, R.M.; Hammock, B.D.; Karin, M.; Tukey, R.H. The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc. Natl. Acad. Sci. USA 2014, 111, 17200–17205. [Google Scholar] [CrossRef] [PubMed]
- Kanetoshi, A.; Katsura, E.; Ogawa, H.; Ohyama, T.; Kaneshima, H.; Miura, T. Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan DP300) and its chlorinated derivatives. Arch. Environ. Contam. Toxicol. 1992, 23, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- James, M.O.; Marth, C.J.; Rowland-Faux, L. Slow O-demethylation of methyl triclosan to triclosan, which is rapidly glucuronidated and sulfonated in channel catfish liver and intestine. Aquat. Toxicol. 2012, 124–125, 124–125. [Google Scholar] [CrossRef]
- Kanetoshi, A.; Ogawa, H.; Katsura, E.; Miura, H.K.T. Formation of polychlorinated dibenzo-p-dioxin from 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan® DP300) and its chlorinated derivatives by exposure to sunlight. J. Chromatogr. A 1988, 454, 145–155. [Google Scholar] [CrossRef]
- Bandow, N.; Altenburger, R.; Streck, G.; Brack, W. Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ. Sci. Technol. 2009, 43, 7343–7349. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.; Altenburger, R.; Heilmeier, H.; Schmitt-Jansen, M. What contributes to the sensitivity of microalgae to triclosan? Aquat. Toxicol. 2008, 90, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, H.; Matsumura, N.; Hirano, M.; Matsuoka, M.; Shiratsuchi, H.; Ishibashi, Y.; Takao, Y.; Arizono, K. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 2004, 67, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Orvos, D.R.; Versteeg, D.J.; Inauen, J.; Capdevielle, M.; Rothenstein, A.; Cunningham, V. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 2002, 21, 1338–1349. [Google Scholar] [CrossRef] [PubMed]
- Tatarazako, N.; Ishibashi, H.; Teshima, K.; Kishi, K.; Arizono, K. Effects of triclosan on various aquatic organisms. Environ. Sci. 2004, 11, 133–140. [Google Scholar] [PubMed]
- SCCS (Scientific Committee on Consumer Safety). Opinion on Triclosan (Antimicrobial Resistance); Scientific Committee on Consumer Safety: Luxembourg, 2010. [Google Scholar]
- Ricart, M.; Guasch, H.; Alberch, M.; Barcelo, D.; Bonnineau, C.; Geiszinger, A.; Farre, M.; Ferrer, J.; Ricciardi, F.; Romani, A.M.; et al. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat. Toxicol. 2010, 100, 346–353. [Google Scholar]
- Capdevielle, M.; Egmond, R.V.; Whelan, M.; Versteeg, D.; Hofmann-Kamensky, M.; Inauen, J.; Cunningham, V.; Voltering, D. Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integr. Environ. Assess. Manag. 2008, 4, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Lyndall, J.; Fuchsman, P.; Bock, M.; Barber, T.; Lauren, D.; Leigh, K.; Perruchon, E.; Capdevielle, M. Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integr. Environ. Assess. Manag. 2010, 6, 419–440. [Google Scholar] [CrossRef] [PubMed]
- Reiss, R.; Mackay, N.; Habig, C.; Griffin, J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 2002, 21, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Peart, T.E. Organic contaminants in Canadian municipal sewage sludge. Part I. Toxic or endocrine-disrupting phenolic compounds. Water Qual. Res. J. Can. 2002, 37, 681–696. [Google Scholar]
- Mackay, D.; Barnthouse, L. Integrated risk assessment of household chemicals and consumer products: Addressing concerns about triclosan. Integr. Environ. Assess. Manag. 2010, 6, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Hendersen, A.K.; Reissman, D.B. Persistence of pharmaceutical and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 2004, 329, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Boyd, G.R.; Reemtsma, H.; Grimm, D.A.; Mitra, S. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Canada. Sci. Total Environ. 2003, 311, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Kantiani, L.; Farré Asperger, D.; Rubio, F. Triclosan and methyl-triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography-mass spectrometry. J. Hydrol. 2008, 361, 1–9. [Google Scholar] [CrossRef]
- Kanda, R.; Griffin, P.; James, H.A.; Fothergill, J. Pharmaceutical and personal care products in sewage treatment works. J. Environ. Monit. 2003, 5, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Heidler, J.; Halden, R.U. Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 2007, 66, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Morrall, D.; McAvoy, D.; Schatowitz, B.; Inauen, J.; Jacob, M.; Hauk, A.; Eckhoff, W. A field study of triclosan loss rates in river water (Cibolo Creek, TX). Chemosphere 2004, 54, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Nakada, N.; Yasojima, M.; Okayasu, Y.; Komori, K.; Suzuki, Y. Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants. Water Sci. Technol. 2010, 61, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ying, G.G.; Zhao, J.L.; Zhang, L.J.; Fang, Y.X.; Nghiem, L.D. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation. J. Hazard. Mater. 2011, 186, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Nishikawa, Y. Gas chromatography-mass spectrometry determination of triclosans in water, sediment and fish samples via methylation with diazomethane. Anal. Chim. Acta 1996, 325, 175–184. [Google Scholar] [CrossRef]
- Ying, G.G.; Kookana, R.S. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ. Int. 2007, 33, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Ying, G.G.; Liu, Y.S.; Chen, F.; Yang, J.F.; Wang, L. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. J. Hazard. Mater. 2010, 179, 215–222. [Google Scholar] [CrossRef]
- Lozano, N.; Rice, C.P.; Ramirez, M.; Torrents, A. Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 2010, 78, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Tixier, C.; Singer, H.P.; Canonica, S.; Muller, S.R. Phototransformation of triclosan in surface waters: A relevant elimination process for this widely used biocide—Laboratory studies, field measurements, and modeling. Environ. Sci. Technol. 2002, 36, 3482–3489. [Google Scholar] [CrossRef] [PubMed]
- Balmer, M.E.; Poiger, T.; Droz, C.; Romanin, K.; Bergqvist, P.A.; Muller, M.D.; Buser, H.R. Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ. Sci. Technol. 2004, 38, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.R.; Heidler, J.; Chillrud, S.N.; Delaquil, A.; Ritchie, J.C.; Mihalic, J.N.; Bopp, R.; Halden, R.U. Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ. Sci. Technol. 2008, 42, 4570–4576. [Google Scholar] [CrossRef] [PubMed]
- Hedman, J.E.; Tocca, J.S.; Gunnarsson, J.S. Remobilization of polychlorinated biphenyl from Baltic Sea sediment: Comparing the roles of bioturbation and physical resuspension. Environ. Toxicol. Chem. 2009, 28, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Cledón, M.; Gerwinski, W.; Theobald, N.; Penchaszadeh, P.E. Organotin Compounds (OTs) in sediments and commercial gastropods off Mar del Plata, Argentina. J. Mar. Biol. Assoc. UK 2006, 86, 751–755. [Google Scholar] [CrossRef]
- Ingerslev, F.; Vaclavik, E.; Halling-Sorenson, B. Pharmaceutical and personal care products: A source of endocrine disruption in the environment? Pure Appl. Chem. 2003, 75, 1181–1893. [Google Scholar] [CrossRef]
- Prada, D.; Mezuca, M.; Gómez, M.J.; Cerda, V.; Ferrer, I.; Farre, F.; Townshend, A.; Aguera, A.; Hernando, M.D.; Fernández-Alba, A.R. Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Anal. Chim. Acta 2004, 524, 241–247. [Google Scholar] [CrossRef]
- Canosa, P.; Morales, S.; Rodriguez, I.; Rubi, E.; Cela, R.; Gomez, M. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine. Anal. Bioanal. Chem. 2005, 383, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Latch, D.E.; Packer, J.L.; Stender, B.L.; VanOverbeke, J.; Arnold, W.A.; McNeill, K. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization Products. Environ. Toxicol. Chem. 2005, 24, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Lores, M.; Llompart, M.; Sanchwz-Prado, L.; Gracia-Jares, C.; Cela, R. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Anal. Bioanal. Chem. 2005, 381, 1294–1298. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Prado, L.; Llompart, M.; Lores, M.; García-Jares, C.; Bayona, J.M.; Cela, R. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere 2006, 65, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Prado, L.; Llompart, M.; Lores, M.; Fernández-Alvarez, M.; García-Jares, C.; Cela, R. Further research on photo-SPME of triclosan. Anal. Bioanal. Chem. 2006, 384, 1548–1457. [Google Scholar] [CrossRef] [PubMed]
- Onodera, S.; Ogawa, M.; Suzuki, S. Chemical changes of organic compounds in chlorinated water. XIII. Gas chromatographic-mass spectrometric studies of the reactions of Irgasan DP 300 [5-chloro-2-(2,4-dichlorophenoxy)phenol] with chlorine in dilute aqueous solution. J. Chromatogr. 1987, 392, 267–275. [Google Scholar] [CrossRef]
- Greyshock, A.E.; Vikesland, P.J. Triclosan reactivity in chloraminated waters. Environ. Sci. Technol. 2006, 40, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
- Nabeshima, Y.; Hasegawa, J.; Matsuda, M.; Kawano, M.; Wakimoto, T.; Morita, M. Determination of triclosan and its related compounds in aquatic environment. Organohalogen Compd. 2007, 69, 1503–1506. [Google Scholar]
- Hasegawa, J.; Nabeshima, Y.; Matsuda, M.; Kawano, M.; Wakimoto, T. Determination of triclosan, its chlorinated derivatives, and their methoxylated analogues in biota. Organohal. Compd. 2007, 69, 1512–1515. [Google Scholar]
- Leiker, T.J.; Abney, S.R.; Goodbred, S.L.; Rosen, M.R. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus Carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada. Sci. Total Environ. 2009, 407, 2102–2114. [Google Scholar] [CrossRef] [PubMed]
- Buth, J.M.; Grandbois, M.; Vikesland, P.J.; McNeill, K.; Arnold, W.A. Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo-p-dioxins. Environ. Toxicol. Chem. 2009, 28, 2555–2563. [Google Scholar] [CrossRef]
- Lee, G.F.; Morris, J.C. Kinetics of chlorination of phenol—Phenolic tastes and odours. Int. J. Air Wat. Poll. 1962, 6, 419–431. [Google Scholar]
- Gallard, H.; von Gunten, U. Chlorination of phenols: Kinetics and formation of chloroform. Environ. Sci. Technol. 2002, 36, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Avila, V.; Hites, R.A. Organic compounds in an industrial wastewater: Their transport into sediments. Environ. Sci. Technol. 1980, 14, 1382–1390. [Google Scholar] [CrossRef]
- Meade, M.J.; Waddell, R.L.; Callahan, T.M. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. Denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol. Lett. 2001, 204, 45–48. [Google Scholar] [CrossRef]
- Neilson, A.H.; Allard, A.S.; Hynning, P.A.; Remberger, M.; Landner, L. Bacterial methylation of chlorinated phenols and guaiacols; Formation of veratroles from guaiacols and high-molecular weight chlorinated lignin. Appl. Environ. Microbiol. 1983, 45, 774–783. [Google Scholar] [CrossRef]
- Field, J.A.; Sierra-Alvarez, R. Microbial degradation of chlorinated dioxins. Chemosphere 2008, 71, 1015–1018. [Google Scholar] [CrossRef]
- Field, J.A.; Sierra-Alvarez, R. Microbial degradation of chlorinated benzenes. Biodegrad 2008, 19, 463–480. [Google Scholar] [CrossRef]
- Son, H.S.; Ko, G.; Zoh, K.D. Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan. J. Hazard. Mater. 2009, 166, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.C.; Kwong, T.Y.; Luo, Q.; Cai, Z. Photolytic oxidation of triclosan. Chemosphere 2006, 65, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Al-Doori, Z.; Morrison, D.; Edwards, G. Susceptibility of MRSA to triclosan. J. Antimicrob. Chemother. 2003, 51, 185–186. [Google Scholar] [CrossRef] [PubMed]
- SHEA (Society for Healthcare Epidemiology of America). Conference. In Proceedings of the 19th Annual Scientific Meeting, San Diego, California, March 19–22, 2009.
- Coogan, M.A.; la Point, T.W. Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a North Texas, USA, stream affected by wastewater treatment plant runoff. Environ. Toxicol. Chem. 2008, 27, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Nakada, N.; Kiri, K.; Shinohara, H.; Harada, A.; Kuroda, K.; Takizawa, S.; Takada, H. Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ. Sci. Technol. 2008, 42, 6347–6353. [Google Scholar] [CrossRef] [PubMed]
- Coogan, M.A.; Edziyie, R.E.; la Point, T.W.; Venables, B.J. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater, treatment plant receiving stream. Chemosphere 2007, 67, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Houtman, C.J.; van Oostveen, A.M.; Brouwer, A.; Lamoree, M.H.; Legler, J. Identification of estrogenic compounds in fish bile using bioassaydirected fractionation. Environ. Sci. Technol. 2004, 38, 6415–6423. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, W.; Ruedel, H.; Weinzel, A.; Schroeter-Kerman, C. Retrospective monitoring of Triclosan and methyl-triclosan in fish: Results from the German environmental specimen bank. Organohal. Compd. 2004, 66, 1516–1521. [Google Scholar] [CrossRef]
- Valters, K.; Li, H.X.; Alaee, M.; D’Sa, I.; Marsh, G.; Bergman, A.; Letcher, R.J. Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River. Environ. Sci. Technol. 2005, 39, 5612–5619. [Google Scholar] [CrossRef] [PubMed]
- Bennett, E.R.; Ross, P.S.; Huff, D.; Alaee, M.; Letcher, R.J. Chlorinated and brominated organic contaminants and metabolites in the plasma and diet of a captive killer whale (Orcinus orca). Mar. Pollut. Bull. 2009, 58, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhillon, G.S.; Kaur, S.; Pulicharla, R.; Brar, S.K.; Cledón, M.; Verma, M.; Surampalli, R.Y. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. Int. J. Environ. Res. Public Health 2015, 12, 5657-5684. https://doi.org/10.3390/ijerph120505657
Dhillon GS, Kaur S, Pulicharla R, Brar SK, Cledón M, Verma M, Surampalli RY. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. International Journal of Environmental Research and Public Health. 2015; 12(5):5657-5684. https://doi.org/10.3390/ijerph120505657
Chicago/Turabian StyleDhillon, Gurpreet Singh, Surinder Kaur, Rama Pulicharla, Satinder Kaur Brar, Maximiliano Cledón, Mausam Verma, and Rao Y. Surampalli. 2015. "Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential" International Journal of Environmental Research and Public Health 12, no. 5: 5657-5684. https://doi.org/10.3390/ijerph120505657
APA StyleDhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M., & Surampalli, R. Y. (2015). Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. International Journal of Environmental Research and Public Health, 12(5), 5657-5684. https://doi.org/10.3390/ijerph120505657