Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Clinical Measurements and Laboratory Tests
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Associations of Being Overweight/Obesity, the MTHFR C677T and MTRR A66G Polymorphisms with T2D
3.3. Interaction Effect of Being Overweight/Obesity with the MTHFR C677T and MTRR A66G Polymorphisms on T2D Risk
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Diabetes Federation, IDF Diabetes Atlas. Available online: http://www.diabetesatlas.org/ (accessed on 14 October 2016).
- Li, H.; Oldenburg, B.; Chamberlain, C.; O’Neil, A.; Xue, B.; Jolley, D.; Hall, R.; Dong, Z.; Guo, Y. Diabetes prevalence and determinants in adults in China mainland from 2000 to 2010: A systematic review. Diabetes Res. Clin. Pract. 2012, 98, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.; Shi, Z.; Hussain, A. Prevalence, trends and risk factors for the diabetes epidemic in China: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 104, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, F.; Hu, G. Genes, environment, and interactions in prevention of type 2 diabetes: A focus on physical activity and lifestyle changes. Curr. Mol. Med. 2008, 8, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Benrahma, H.; Abidi, O.; Melouk, L.; Ajjemami, M.; Rouba, H.; Chadli, A.; Oudghiri, M.; Farouqui, A.; Barakat, A. Association of the C677T polymorphism in the human methylenetetrahydrofolate reductase (MTHFR) gene with the genetic predisposition for type 2 diabetes mellitus in a Moroccan population. Genet. Test. Mol. Biomarkers 2012, 16, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Ynag, M.; Liu, S.; Wang, C.; Zuo, C. Polymorphism of methionine synthase reductase gene in type 2 diabetes mellitus with macrovascular disease. Acta Univ. Med. Anhui 2004, 39, 50–53. (In Chinese) [Google Scholar]
- Qin, X.; Li, Y.; Yuan, H.; Xie, D.; Tang, G.; Wang, B.; Wang, X.; Xu, X.; Xu, X.; Hou, F. Relationship of MTHFR gene 677C→T polymorphism, homocysteine, and estimated glomerular filtration rate levels with the risk of new-onset diabetes. Medicine 2015, 94, e563. [Google Scholar] [CrossRef] [PubMed]
- Rozen, R. Genetic predisposition to hyperhomocysteinemia: Deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb. Haemost. 1997, 78, 523–526. [Google Scholar] [PubMed]
- Gaughan, D.; Kluijtmans, L.; Barbaux, S.; McMaster, D.; Young, I.; Yarnell, J.; Evans, A.; Whitehead, A. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001, 157, 451–456. [Google Scholar] [CrossRef]
- Stipanuk, M. Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 2004, 24, 539–577. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Ren, J.; Huang, J.; Li, D. Association of homocysteine with type 2 diabetes: A meta-analysis implementing Mendelian randomization approach. BMC Genom. 2013, 14, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wu, Q.; Zhang, L.; Hao, Y.; Fan, R.; Peng, X.; Liu, S.; Chen, Z.; Zhang, T.; Chen, S.; et al. Elevated total plasma homocysteine levels are associated with type 2 diabetes in women with hypertension. Asia Pac. J. Clin. Nutr. 2015, 24, 683–691. [Google Scholar] [PubMed]
- Golbahar, J.; Aminzadeh, M.; Kassab, S.; Omrani, G. Hyperhomocysteinemia induces insulin resistance in male Sprague-Dawley rats. Diabetes Res. Clin. Pract. 2007, 76, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.L.; Woodside, J.V.; Yarnell, J.W.; McMaster, D.; Young, I.S.; McCrum, E.E.; Gey, K.F.; Whitehead, A.S.; Evans, A.E. The common “thermolabile” variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 1996, 89, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, B.; Sun, D.; Shi, M.; Ma, Y.; Liu, Z.; Wang, B.; Xu, X.; Xu, X.; Ji, Q.; et al. Prevalence of hyperhomocysteinaemia and some of its major determinants in Shaanxi Province, China: A cross-sectional study. Br. J. Nutr. 2015, 113, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Zee, R.; Mora, S.; Cheng, S.; Erlich, H.; Lindpaintner, K.; Rifai, N.; Buring, J.; Ridker, P. Homocysteine, 5,10-methylenetetrahydrofolate reductase 677C>T polymorphism, nutrient intake, and incident cardiovascular disease in 24,968 initially healthy women. Clin. Chem. 2007, 53, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Crider, K.; Zhu, J.; Hao, L.; Yang, Q.; Yang, T.; Gindler, J.; Maneval, D.; Quinlivan, E.; Li, Z.; Bailey, L.; et al. MTHFR 677C→T genotype is associated with folate and homocysteine concentrations in a large, population-based, double-blind trial of folic acid supplementation. Am. J. Clin. Nutr. 2011, 93, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, H.; Wolthers, K.; Munro, A.; Scrutton, N.; Banerjee, R. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase. Biochemistry 2004, 43, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, H.; Munson, T.; Banerjee, R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry 2002, 41, 13378–13385. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, J.; Bailey, L.; Shelnutt, K.; Dunwoody, K.; Maneval, D.; Davis, S.; Quinlivan, E.; Gregory, J.; Theriaque, D.; Kauwell, G. Methionine synthase reductase 66A→G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C→T variant. J. Nutr. 2004, 134, 2985–2990. [Google Scholar] [PubMed]
- Wang, H.; Hu, C.; Xiao, S.; Wan, B. Association of tagging SNPs in the MTHFR gene with risk of type 2 diabetes mellitus and serum homocysteine levels in a Chinese population. Dis. Markers 2014, 2014, 725731. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Li, J.; Zhang, Y.; Ma, W.; Fan, F.; Wang, B.; Xing, H.; Tang, G.; Wang, X.; Xu, X.; et al. Prevalence and associated factors of diabetes and impaired fasting glucose in Chinese hypertensive adults aged 45 to 75 years. PLoS ONE 2012, 7, e42538. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Sun, J.; Chen, Y.; Xie, H.; Xu, D.; Li, D. Associations of common variants in methionine metabolism pathway genes with plasma homocysteine and the risk of type 2 diabetes in Han Chinese. J. Nutrigenet. Nutrigenomics 2014, 7, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Fu, W.; Wu, Y.; Yeh, C.; Huang, C.; Shiau, M. Prevalence of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in Taiwanese patients with Type 2 diabetic mellitus. Clin. Biochem. 2011, 44, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Kaur, I.; Tabassum, R.; Dwivedi, O.; Ghosh, S.; Tandon, N.; Bharadwaj, D. Common variants of homocysteine metabolism pathway genes and risk of type 2 diabetes and related traits in Indians. Exp. Diabetes Res. 2012, 2012, 960318. [Google Scholar] [CrossRef] [PubMed]
- Movva, S.; Alluri, R.; Venkatasubramanian, S.; Vedicherla, B.; Vattam, K.; Ahuja, Y.; Hasan, Q. Association of methylene tetrahydrofolate reductase C677T genotype with type 2 diabetes mellitus patients with and without renal complications. Genet. Test. Mol. Biomark. 2011, 15, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Jiang, C.; Xu, M.; Pang, Y.; Feng, J.; Xiang, X.; Kong, W.; Xu, G.; Li, Y.; et al. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J. Biol. Chem. 2013, 288, 9583–9592. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, C.; Xu, G.; Wang, N.; Zhu, Y.; Tang, C.; Wang, X. Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 2008, 57, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.; Haffner, S. Body fat distribution and hyperinsulinemia as risk factors for diabetes and cardiovascular disease. Arteriosclerosis 1986, 6, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Wikner, C.; Gigante, B.; Hellenius, M.; Faire, U.; Leander, K. The risk of type 2 diabetes in men is synergistically affected by parental history of diabetes and overweight. PLoS ONE 2013, 8, e61763. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Chen, H.; Chou, P. Gender Difference in the Interaction Effects of Diabetes and Hypertension on Stroke among the Elderly in the Shih-Pai Study, Taiwan. PLoS ONE 2015, 10, e136634. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, Y.; Li, Y.; Fan, S.; Zhi, X.; Lu, X.; Wang, D.; Zheng, Q.; Wang, Y.; Wang, Y.; et al. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: Findings from 15,357 adults of Han nationality. PLoS ONE 2013, 8, e57917. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Fan, S.; Zhi, X.; Wang, Y.; Wang, Y.; Zheng, Q.; Sun, G. Prevalence of hyperhomocysteinemia in China: A systematic review and meta-analysis. Nutrients 2015, 7, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults: Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Asia Pac. J. Clin. Nutr. 2002, 11, S685–S693. [Google Scholar]
- Ahlbom, A.; Alfredsson, L. Interaction: A word with two meanings creates confusion. Eur. J. Epidemiol. 2005, 20, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K. Epidemiology: An Introduction; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Andersson, T.; Alfredsson, L.; Kallberg, H.; Zdravkovic, S.; Ahlbom, A. Calculating measures of biological interaction. Eur. J. Epidemiol. 2005, 20, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Power V3.0 Software. Available online: https://dceg.cancer.gov/tools/design/POWER (accessed on 7 December 2016).
- Al-Rubeaan, K.; Siddiqui, K.; Saeb, A.; Nazir, N.; Al-Naqeb, D.; Al-Qasim, S. ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: A meta-analysis. Gene 2013, 520, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wu, X.; Zhi, X.; Liu, L.; Zheng, Q.; Sun, G. Methylenetetrahydrofolate reductase C677T polymorphism and type 2 diabetes mellitus in Chinese population: A meta-analysis of 29 case-control studies. PLoS ONE 2014, 9, e102443. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Fan, S.; Zhi, X.; Wang, D.; Li, Y.; Wang, Y.; Wang, Y.; Wei, J.; Zheng, Q.; Sun, G. Associations of MTHFR C677T and MTRR A66G gene polymorphisms with metabolic syndrome: A case-control study in Northern China. Int. J. Mol. Sci. 2014, 15, 21687–21702. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, Q. Impact of apolipoprotein E gene polymorphism and additional gene-obesity interaction on type 2 diabetes risk in a Chinese Han old population. Obes. Res. Clin. Pract. 2016. [Google Scholar] [CrossRef] [PubMed]
- Bressler, J.; Pankow, J.; Coresh, J.; Boerwinkle, E. Interaction between the NOS3 gene and obesity as a determinant of risk of type 2 diabetes: The atherosclerosis risk in communities study. PLoS ONE 2013, 8, e79466. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Uemura, H.; Arisawa, K.; Katsuura-Kamano, S.; Hamajima, N.; Hishida, A.; Suma, S.; Oze, I.; Nakamura, K.; Takashima, N.; et al. Association between brain-muscle-ARNT-like protein-2 (BMAL2) gene polymorphism and type 2 diabetes mellitus in obese Japanese individuals: A cross-sectional analysis of the Japan Multi-institutional Collaborative Cohort Study. Diabetes Res. Clin. Pract. 2015, 110, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A.; Iwakoshi, N.; Ozdelen, E.; Tuncman, G.; Görgün, C.; Glimcher, L.; Hotamisligil, G. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004, 306, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.; de Souza, F.; Pendezza, A.; Fonseca, F.; Hix, S.; Oliveira, A.; Sarni, R.; D’Almeida, V. Homocysteine and cysteine levels in prepubertal children: Association with waist circumference and lipid profile. Nutrition 2013, 29, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Vayá, A.; Carmona, P.; Badia, N.; Pérez, R.; Hernandez, M.; Corella, D. Homocysteine levels and the metabolic syndrome in a Mediterranean population: A case-control study. Clin. Hemorheol. Microcirc. 2011, 47, 59–66. [Google Scholar] [PubMed]
- Papandreou, D.; Rousso, I.; Makedou, A.; Arvanitidou, M.; Mavromichalis, I. Association of blood pressure, obesity and serum homocysteine levels in healthy children. Acta Paediatr. 2007, 96, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Guzelmeric, K.; Alkan, N.; Pirimoglu, M.; Unal, O.; Turan, C. Chronic inflammation and elevated homocysteine levels are associated with increased body mass index in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2007, 23, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yang, B.; Zhi, X.; He, M.; Wang, D.; Wang, Y.; Wang, Y.; Wei, J.; Zheng, Q.; Sun, G. Are MTHFR C677T and MTRR A66G polymorphisms associated with overweight/obesity risk? From a case–control to a meta-analysis of 30,327 subjects. Int. J. Mol. Sci. 2015, 16, 11849–11863. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, Y.; Xue, J.; Zhu, Y.; Lu, H. Methylenetetrahydrofolate reductase polymorphism associated with susceptibility to coronary heart disease in Chinese type 2 diabetic patients. Mol. Cell. Endocrinol. 2005, 229, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Agachan, B.; Ergen, A.; Karaalib, Z.; Isbir, T. Methylene tetrahydrofolate reductase C677T mutation and left ventricular hypertrophy in Turkish patients with type II diabetes mellitus. J. Biochem. Mol. Biol. 2004, 37, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Pollex, R.; Mamakeesick, M.; Zinman, B.; Harris, S.; Hanley, A.; Hegele, R. Methylenetetrahydrofolate reductase polymorphism 677C>T is associated with peripheral arterial disease in type 2 diabetes. Cardiovasc. Diabetol. 2005. [Google Scholar] [CrossRef] [PubMed]
- Soinio, M.; Marniemi, J.; Laakso, M.; Lehto, S.; Rönnemaa, T. Elevated plasma homocysteine level is an independent predictor of coronary heart disease events in patients with type 2 diabetes mellitus. Ann. Intern. Med. 2004, 140, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Kostense, P.; Bos, G.; Heine, R.; Dekker, J.; Nijpels, G.; Bouter, L.; Stehouwer, C. Hyperhomocysteinaemia is associated with coronary events in type 2 diabetes. J. Intern. Med. 2003, 253, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Patients (n = 180) | Controls (n = 350) | p-Value |
---|---|---|---|
Gender (M/F) | 154/26 | 296/54 | 0.764 |
Age (years) | 51.08 ± 8.60 | 50.04 ± 7.03 | 0.165 |
BMI (kg/m2) | 26.90 ± 3.16 | 25.15 ± 2.95 | <0.001 |
FBG (mmol/L) | 8.49 ± 2.18 | 5.10 ± 0.48 | <0.001 |
TG ( mmol/L) | 2.04 ± 1.84 | 1.34 ± 0.80 | <0.001 |
TC (mmol/L) | 5.34 ± 1.04 | 5.02 ± 1.00 | 0.001 |
HDL-C (mmol/L) | 1.18 ± 0.28 | 1.22 ± 0.30 | 0.139 |
LDL-C (mmol/L) | 3.17 ± 1.08 | 3.06 ± 0.86 | 0.214 |
SBP (mmHg) | 141.65 ± 18.21 | 130.62 ± 17.52 | <0.001 |
DBP (mmHg) | 88.68 ± 12.07 | 83.41 ± 11.90 | <0.001 |
Characteristics | Patients (n = 180) n (%) | Controls (n = 350) n (%) | Crude OR (95% CI) | p- Value | Adjusted OR # (95% CI) | p- Value |
---|---|---|---|---|---|---|
MTHFR C677T | ||||||
Codominant model | ||||||
CC | 28 (15.56) | 76 (21.71) | 1.00 | – | 1.00 | – |
CT | 86 (47.78) | 172 (49.14) | 1.36 (0.82–2.25) | 0.236 | 1.35 (0.81–2.24) | 0.247 |
TT | 66 (36.67) | 102 (29.14) | 1.76 (1.03–2.99) | 0.038 | 1.78 (1.04–3.03) | 0.035 |
Dominant model | ||||||
CC | 28 (15.56) | 76 (21.71) | 1.00 | – | 1.00 | – |
CT + TT | 152 (84.44) | 274 (78.29) | 1.51 (0.94–2.43) | 0.092 | 1.51 (0.94–2.43) | 0.093 |
Recessive model | ||||||
CC + CT | 114 (63.33) | 248 (70.86) | 1.00 | – | 1.00 | – |
TT | 66 (36.67) | 102 (29.14) | 1.41 (0.96–2.06) | 0.078 | 1.43 (0.98–2.10) | 0.066 |
MTRR A66G | ||||||
Codominant model | ||||||
AA | 96 (53.33) | 217 (62.00) | 1.00 | – | 1.00 | – |
AG | 66 (36.67) | 111 (31.71) | 1.34 (0.91–1.98) | 0.135 | 1.36 (0.92–2.01) | 0.123 |
GG | 18 (10.00) | 22 (6.29) | 1.85 (0.95–3.61) | 0.071 | 1.79 (0.92–3.51) | 0.088 |
Dominant model | ||||||
AA | 96 (53.33) | 217 (62.00) | 1.00 | – | 1.00 | – |
AG + GG | 84 (46.67) | 133 (38.00) | 1.43 (0.99–2.05) | 0.055 | 1.43 (1.00–2.06) | 0.053 |
Recessive model | ||||||
AA + AG | 162 (90.00) | 328 (93.71) | 1.00 | – | 1.00 | – |
GG | 18 (10.00) | 22 (6.29) | 1.66 (0.86–3.18) | 0.128 | 1.60 (0.83–3.09) | 0.158 |
BMI | ||||||
<24 (normal weight) | 31 (17.22) | 121 (34.57) | 1.00 | – | 1.00 | – |
≥24 (overweight & obesity) | 149 (82.78) | 229 (65.43) | 2.54 (1.63–3.96) | <0.001 | 2.64 ( 1.67–4.17) | <0.001 |
BMI | Genotype | Stratified OR # (95% CI) | Interaction Analyses | |||
---|---|---|---|---|---|---|
Adjusted OR # (95% CI) | RERI # (95% CI) | AP # (95% CI) | S # (95% CI) | |||
MTHFR C677T | 1.385 (−0.130–2.899) | 0.404 (0.047–0.761) * | 2.327 (0.704–7.693) | |||
<24 | CC + CT | 1.00 | 1.00 | |||
<24 | TT | 0.86 (0.35–2.12) | 0.86 (0.35–2.12) | |||
≥24 | CC + CT | 1.00 | 2.18 (1.27–3.73) | |||
≥24 | TT | 1.55 (1.00–2.39) | 3.43 (1.90–6.19) | |||
MTRR A66G | 1.703 (0.401–3.004) * | 0.528 (0.223–0.834) * | 4.279 (0.462–39.590) | |||
<24 | AA | 1.00 | 1.00 | |||
<24 | AG + GG | 0.72 (0.32–1.62) | 0.72 (0.32–1.62) | |||
≥24 | AA | 1.00 | 1.80 (1.01–3.24) | |||
≥24 | AG + GG | 1.79 (1.18–2.73) | 3.22 (1.76–5.90) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, X.; Yang, B.; Fan, S.; Li, Y.; He, M.; Wang, D.; Wang, Y.; Wei, J.; Zheng, Q.; Sun, G. Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes. Int. J. Environ. Res. Public Health 2016, 13, 1243. https://doi.org/10.3390/ijerph13121243
Zhi X, Yang B, Fan S, Li Y, He M, Wang D, Wang Y, Wei J, Zheng Q, Sun G. Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes. International Journal of Environmental Research and Public Health. 2016; 13(12):1243. https://doi.org/10.3390/ijerph13121243
Chicago/Turabian StyleZhi, Xueyuan, Boyi Yang, Shujun Fan, Yongfang Li, Miao He, Da Wang, Yanxun Wang, Jian Wei, Quanmei Zheng, and Guifan Sun. 2016. "Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes" International Journal of Environmental Research and Public Health 13, no. 12: 1243. https://doi.org/10.3390/ijerph13121243
APA StyleZhi, X., Yang, B., Fan, S., Li, Y., He, M., Wang, D., Wang, Y., Wei, J., Zheng, Q., & Sun, G. (2016). Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes. International Journal of Environmental Research and Public Health, 13(12), 1243. https://doi.org/10.3390/ijerph13121243