Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti
Abstract
:1. Introduction
Cholera in Haiti
2. Experimental Section
2.1. Prior Methods and Results (Stage 1)
2.2. Stage 2
2.3. Stage 3
- Five “similar” locations were identified based on general proximity to the “of interest” sites, and the risk maps created from the 2012 spatial video run. A typical example would be a drain that had contained standing water and was “round the corner” from any positive water sample location.
- Five sample sites were suggested by other risk locations from the 2012 hazard maps, not proximate but with some spatial connection to the “of interest” sites. For example, by looking at the elevation of the streets, it was possible to guestimate which locations might be connected to the positive sites, being either “upstream” or “downstream” in terms of water drainage. Sites were also selected based on key locations that, from previous experience, might have contributed to the positive result, such as a nearby school.
- Five “prospect” test sites were identified from the 2012 hazard maps from which there had been no samples taken. As the water sample locations had been visually determined by the spatial video team during collection with no other risk data to guide them, it was possible that other areas might also have yielded positive results but were not tested. These five prospect sites were to fill-in such geographic gaps.
3. Results and Discussion
3.1. Stage 2
3.2. Stage 3
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, K.; LeJeune, J.; Alsdorf, D.; Lu, B.; Shum, C.; Liang, S. Global distribution of outbreaks of water-associated infectious diseases. PLoS Negl. Trop. Dis. 2012, 6, e1483. [Google Scholar] [CrossRef] [PubMed]
- Mukandavire, Z.; Smith, D.L.; Morris, J.G., Jr. Cholera in Haiti: Reproductive numbers and vaccination coverage estimates. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.; Mills, J.W.; Blackburn, J.K. A spatial variant of the basic reproduction number for the New Orleans yellow fever epidemic of 1878. Prof. Geogr. 2007, 59, 492–502. [Google Scholar] [CrossRef]
- Blackburn, J.K.; Diamond, U.; Kracalik, I.T.; Widmer, J.; Brown, W.; Morrissey, B.D.; Alexander, K.A.; Curtis, A.J.; Ali, A.; Morris, J.G., Jr. Household-level spatiotemporal patterns of incidence of cholera, Haiti, 2011. Emerg. Infect. Dis. 2014, 20, 1516. [Google Scholar] [CrossRef] [PubMed]
- Bellan, S.E.; Pulliam, J.R.; Pearson, C.A.; Champredon, D.; Fox, S.J.; Skrip, L.; Galvani, A.P.; Gambhir, M.; Lopman, B.A.; Porco, T.C. Statistical power and validity of Ebola vaccine trials in Sierra Leone: A simulation study of trial design and analysis. Lancet Infect. Dis. 2015, 15, 705–710. [Google Scholar] [CrossRef]
- Ali, M.; Lopez, A.L.; You, Y.; Kim, Y.E.; Sah, B.; Maskery, B.; Clemens, J. The global burden of cholera. Bull. World Health Organ. 2012, 90, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Naser, I.B.; Islam, M.J.; Faruque, A.; Ghosh, A.; Nair, G.B.; Sack, D.A.; Mekalanos, J.J. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc. Natl. Acad. Sci. USA 2005, 102, 1702–1707. [Google Scholar] [CrossRef] [PubMed]
- Momen, H.; Salles, C. Enzyme markers for Vibrio cholerae: Identification of classical, El Tor and environmental strains. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 773–776. [Google Scholar] [CrossRef]
- Safa, A.; Sultana, J.; Dac Cam, P.; Mwansa, J.C.; Kong, Y.C.R. Vibrio cholerae o1 hybrid el tor strains, Asia and Africa. Emerg. Infect. Dis. 2008, 14, 987–988. [Google Scholar] [CrossRef] [PubMed]
- Halder, K.; Das, B.; Nair, G.B.; Bhadra, R.K. Molecular evidence favouring step-wise evolution of mozambique Vibrio cholerae o1 El Tor hybrid strain. Microbiology 2010, 156, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Nusrin, S.; Islam, A.; Bhuiyan, N.A.; Rahim, N.; Delgado, G.; Morales, R.; Mendez, J.L.; Navarro, A.; Gil, A.I. Cholera between 1991 and 1997 in mexico was associated with infection by classical, El Tor, and El Tor variants of Vibrio cholerae. J. Clin. Microbiol. 2010, 48, 3666–3674. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-S.; Sorenson, J.; Harris, J.B.; Robins, W.P.; Charles, R.C.; Jean-Charles, R.R.; Bullard, J.; Webster, D.R.; Kasarskis, A.; Peluso, P. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 2011, 364, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.J.; Harris, J.B.; Morris, J.G.; Calderwood, S.B.; Camilli, A. Cholera transmission: The host, pathogen and bacteriophage dynamic. Nat. Rev. Microbiol. 2009, 7, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, A.; Bertuzzo, E.; Mari, L.; Righetto, L.; Blokesch, M.; Gatto, M.; Casagrandi, R.; Murray, M.; Vesenbeckh, S.M.; Rodriguez-Iturbe, I. Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc. Natl. Acad. Sci. USA 2012, 109, 6602–6607. [Google Scholar] [CrossRef] [PubMed]
- PAHO. Epidemiological Update, Cholera. 23 December 2015. Available online: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&Itemid=270&gid=32623&lang=en (accessed on 3 November 2015).
- Curtis, A.; Blackburn, J.K.; Widmer, J.M.; Morris, J.G., Jr. A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: Mapping health risks using spatial video in Haiti. Int. J. Health Geogr. 2013, 12. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.T.; Weppelmann, T.A.; Longini, I.; de Rochars, V.M.B.; Morris, J.G., Jr.; Ali, A. Increased isolation frequency of toxigenic Vibrio cholerae o1 from environmental monitoring sites in Haiti. PLoS ONE 2015, 10, e0124098. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.T.; Weppelmann, T.A.; Weber, C.D.; Johnson, J.A.; Rashid, M.H.; Birch, C.S.; Brumback, B.A.; de Rochars, V.E.M.B.; Glenn, J.; Ali, A. Monitoring water sources for environmental reservoirs of toxigenic Vibrio cholerae o1, Haiti. Emerg. Infect. Dis. 2014, 20, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D.; Yen, M.; Shapiro, B.J.; Hilaire, I.J.; Charles, R.C.; Teng, J.E.; Ivers, L.C.; Boncy, J.; Harris, J.B.; Camilli, A. Evolutionary consequences of intra-patient phage predation on microbial populations. Elife 2014, 3, e03497. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtis, A.; Blackburn, J.K.; Smiley, S.L.; Yen, M.; Camilli, A.; Alam, M.T.; Ali, A.; Morris, J.G. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti. Int. J. Environ. Res. Public Health 2016, 13, 187. https://doi.org/10.3390/ijerph13020187
Curtis A, Blackburn JK, Smiley SL, Yen M, Camilli A, Alam MT, Ali A, Morris JG. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti. International Journal of Environmental Research and Public Health. 2016; 13(2):187. https://doi.org/10.3390/ijerph13020187
Chicago/Turabian StyleCurtis, Andrew, Jason K. Blackburn, Sarah L. Smiley, Minmin Yen, Andrew Camilli, Meer Taifur Alam, Afsar Ali, and J. Glenn Morris. 2016. "Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti" International Journal of Environmental Research and Public Health 13, no. 2: 187. https://doi.org/10.3390/ijerph13020187