Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan
Abstract
:1. Introduction
2. Methodology
2.1. Simulating Process
2.2. Governing Equations
3. Information on the Study Site In-Situ
3.1. Description of the Study Site
3.2. In-Situ Data Collection and Measurement
4. Numerical Simulation
4.1. Numerical Model Construction
4.2. Boundary Condition
4.3. Parameters Inputting
5. Results and Discussion
5.1. The One Year Groundwater Flow Model Simulation and Calibration
5.2. Contaminant Transport Calibration
5.3. Predicting Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Porowsk, D. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Manag. 2015, 39, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Sizirici, B.; Tansel, B. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: A case study. Waste Manag. 2015, 38, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.J.; Reilly, T.J.; Lopez, A.; Romanok, K.; Wengrowski, E.W. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills. Waste Manag. 2015, 43, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Ou, W.; Wang, C.; Wang, Z.; Huang, Q.; Jin, J.; Tan, J. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci. Total Environ. 2014, 490, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Pleasant, S.; O’Donnell, A.; Powell, J.; Jain, P.; Townsend, T. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill. Sci. Total Environ. 2014, 485–486, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Tong, X.; Currell, M.J.; Cao, G.; Jin, M.; Tong, C. Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. J. Geochem. Explor. 2014, 136, 24–39. [Google Scholar] [CrossRef]
- El-Salam, M.M.A.; Abu-Zuid, G.I. Impact of landfill leachate on the groundwater quality: A case study in Egypt. J. Adv. Res. 2015, 6, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Chen, S.; Diao, W. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. Environ. Pollut. 2012, 165, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Li, Y.; Zhang, Y.; Zhang, C.; Li, X.; Chen, Z.; Huang, J.; Li, X.; Flores, G.; Kamon, M. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 2014, 168, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Brigham Young University. Groundwater Modeling System (GMS), Version 4.0, Software, Brigham Young University: Salt Lake City, UT, USA, 2002.
- Abu-Rukah, Y.; Al-Kofahi, O. The assessment of the effect of landfill leachate on ground-water quality—A case study—El-Akader landfill site—North Jordan. J. Arid Environ. 2001, 49, 615–630. [Google Scholar] [CrossRef]
- Al-Yaqout, A.F.; Hamoda, M.F. Evaluation of landfill leachate in arid climate—A case study. Environ. Int. 2003, 29, 593–600. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, A.A.M.; Terao, H.; Kato, K.; Ohta, K. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ. Int. 2004, 29, 1009–1017. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Rapti-Caputo, D.; Vaccaro, C. Geochemical evidences of landfill leachate in groundwater. Eng. Geol. 2006, 85, 111–121. [Google Scholar] [CrossRef]
- Kim, K.; Ko, K.S.; Kim, Y.; Lee, K.S. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 2012, 87, 851–856. [Google Scholar] [CrossRef] [PubMed]
- CWB. Daily Precipitation. Central Weather Bureau: R.O.C., Taiwan. Available online: http://www.cwb.gov.tw/V7e/climate/dailyPrecipitation/dP.htm (accessed on 26 February 2016).
- Harbaugh, A.W. Modflow-2005, the U.S. Geological Survey Modular Ground-Water Model of the Ground-Water Flow Process; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA, 2005.
- Zheng, C.; Wang, P.P. MT3DMS, A Modular Tree-Dimensional Transport Model; Technical Report; US Army Corps of Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1998. [Google Scholar]
- EPA. Regulations for Groundwater Monitoring. Environmental Protection Administration: R.O.C., Taiwan. Available online: http://webcache.googleusercontent.com/search?q=cache%3AJV-q1OTqsp4J%3Awq.epa.gov.tw%2FCode%2FBusiness%2FStatutory.aspx%3FTabs%3D3%26Languages%3Den%20&cd=1&hl=zh-TW&ct=clnk&gl=tw (accessed on 27 April 2016).
- Mehnert, E.; Hensel, B. Coal combustion by products and contaminant transport in groundwater. In Proceedings of the Coal Combustion By-Products Associated with Coal Mining Interactive Forum, Carbondale, IL, USA, 29–31 October 1996.
- Bedient, P.; Rifai, H.; Newell, C. Ground Water Contamination: Transport and Remediation, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Wong, C.F.; Hayduk, W. Correlations for Prediction of Molecular Diffusivities in Liquids at Infinite Dilution. Can. J. Chem. Eng. 1990, 68, 849–859. [Google Scholar] [CrossRef]
- Lanir, Y.; Seybold, J.; Schneiderman, R.; Huyghe, J.M. Partition and diffusion of sodium and chloride ions in soft charged foam: The effect of external salt concentration and mechanical deformation. Tissue Eng. 1998, 4, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Amirabdollahian, M.; Datta, B. Identification of Contaminant Source Characteristics and Monitoring Network Design in Groundwater Aquifers: An Overview. J. Environ. Prot. 2013, 4, 26–41. [Google Scholar] [CrossRef]
Borehole No. | N1 (m) | N2 (m) | N3 (m) | N4 (m) | Average (m) | |
---|---|---|---|---|---|---|
Date | 26/01/2013 | 1.9 | 1.706 | 2.216 | 2.198 | 2.005 |
26/02/2013 | 1.76 | 1.986 | 2.016 | 2.048 | 1.9525 | |
26/03/2013 | 1.27 | 1.516 | 1.436 | 1.518 | 1.435 | |
26/04/2013 | 2.19 | 2.446 | 2.426 | 2.358 | 2.355 | |
27/05/2013 | 2.76 | 2.886 | 2.906 | 2.908 | 2.865 | |
26/06/2013 | 3.16 | 3.416 | 3.386 | 3.288 | 3.3125 | |
26/07/2013 | 3.36 | 3.586 | 3.566 | 3.498 | 3.5025 | |
26/08/2013 | 3.38 | 3.786 | 3.756 | 3.698 | 3.655 | |
30/09/2013 | 4.03 | 4.286 | 4.276 | 4.208 | 4.2 | |
25/10/2013 | 2.82 | 3.346 | 3.256 | 3.218 | 3.16 | |
30/11/2013 | 2.66 | 3.046 | 3.016 | 2.968 | 2.9225 | |
24/12/2013 | 2.545 | 2.956 | 2.861 | 2.813 | 2.79375 |
Borehole No. | Hydraulic Conductivity (m/s) |
---|---|
N1 | 1.259 × 10−4 |
N2 | 7.144 × 10−5 |
N3 | 3.079 × 10−5 |
N4 | 2.392 × 10−5 |
Filling material | 1.26 × 10−4 |
Silty/clay | 1.26 × 10−5 |
Fine sand | 7.17 × 10−4 |
Clayey sand | 7.17 × 10−7 |
Indicator of Water Quality | Unit | Level of Pollutants in Wells | |||
---|---|---|---|---|---|
N1 | N2 | N3 | N4 | ||
Temperature | °C | 25.5 | 25.1 | 26.4 | 25.2 |
pH | 7.7 | 7.8 | 7.8 | 7.6 | |
Electrical Conductivity | µS/cm | 3990 | 2880 | 3110 | 5500 |
Total Dissolved Matters (500) | mg/L | 2100 | 1650 | 1600 | 2850 |
Total Hardness as CaCO3 (300) | mg/L | 197 | 174 | 114 | 276 |
Ammonium Nitrogen (0.05) | mg/L | 4.31 | 5.43 | 2.32 | 0.15 |
Nitrite Nitrogen (0.1) | mg/L | ND | ND | ND | ND |
Nitrate Nitrogen (10) | mg/L | 0.14 | 0.10 | 0.01 | ND |
Total Organic Carbon as C (2) | mg/L | 3.1 | 13.0 | 1.9 | 2.6 |
Chlorides (250) | mg/L | 899 | 456 | 669 | 1440 |
Sulfate (250) | mg/L | 28.9 | 49.2 | 6.64 | 12.6 |
Arsenic (0.01) | mg/L | 0.0548 | 0.0699 | 0.0376 | 0.0336 |
Total Chromium (0.05) | mg/L | ND | ND | ND | ND |
Copper (1.0) | mg/L | ND | <0.05 | ND | ND |
Manganese (0.05) | mg/L | 0.08 | 0.04 | 0.05 | 0.08 |
Ferrum Iron | mg/L | <0.05 | 0.14 | 0.06 | 0.06 |
Lead (0.01) | mg/L | ND | ND | ND | <0.10 |
Zinc (5.0) | mg/L | <0.01 | 0.13 | <0.01 | <0.01 |
Nickel (0.1) | mg/L | ND | ND | ND | ND |
Cadmium (0.005) | mg/L | ND | ND | ND | ND |
Mercury (0.002) | mg/L | ND | ND | ND | ND |
Model Parameters | Unit | Value |
---|---|---|
Effective molecular diffusion coefficient | m2/year | 0.05 |
Hydrodynamic dispersion coefficient , , | m2/year | 0.0095 |
Longitudinal dispersivity | m | 2.5 |
Transverse dispersivity , | m | 0.5 |
Partition coefficient (Lanir et al. [24]) of chloride | - | 0.89 |
Partition coefficient (Amirabdollahian and Datta, [25]) of ammonium nitrogen | - | 1.17 |
Injection rate | m3/day | 19.2 |
Maximum concentration of chlorides leachate | mg/L | 4240 |
Maximum concentration of ammonium nitrogen leachate | mg/L | 35 |
Porosity For filling material layer | - | 0.35 |
For layer silty clay | 0.28 | |
For layer fine sand | 0.3 | |
For layer clayey sand | 0.04 | |
Bulk density For filling material layer | g/cm3 | 1.8 |
For layer silty clay | 1.4 | |
For layer fine sand | 1.6 | |
For layer clayey sand | 2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-S.; Tu, C.-H.; Chen, S.-J.; Chen, C.-C. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 467. https://doi.org/10.3390/ijerph13050467
Chen C-S, Tu C-H, Chen S-J, Chen C-C. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan. International Journal of Environmental Research and Public Health. 2016; 13(5):467. https://doi.org/10.3390/ijerph13050467
Chicago/Turabian StyleChen, Chao-Shi, Chia-Huei Tu, Shih-Jen Chen, and Cheng-Chung Chen. 2016. "Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan" International Journal of Environmental Research and Public Health 13, no. 5: 467. https://doi.org/10.3390/ijerph13050467
APA StyleChen, C.-S., Tu, C.-H., Chen, S.-J., & Chen, C.-C. (2016). Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan. International Journal of Environmental Research and Public Health, 13(5), 467. https://doi.org/10.3390/ijerph13050467