Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Dust Sampling and Analysis
2.3. Outlier Detection
2.4. Geoaccumulation Analysis
2.5. Local Spatial Autocorrelation
2.6. Data Transformation
2.7. Statistical Analysis
2.8. Data Computation
3. Results and Discussion
3.1. Metal Concentrations in the Campus Dust
3.2. Geoaccumulation Index Assessment (Igeo)
3.3. Effects of the Weight Function on Hotspot Identification
3.4. Local Indicators of Spatial Association (LISA)
3.5. Metal Hot-Spots in Campus Dust
3.6. Principal Component Analysis (PCA)
3.7. Causes of Hot-Spot Formation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hien, P.D.; Binh, N.T.; Truong, Y.; Ngo, N.T. Temporal variations of source impacts at the receptor, as derived from air particulate monitoring data in Ho Chi Minh City, Vietnam. Atmos. Environ. 1999, 33, 3133–3142. [Google Scholar] [CrossRef]
- Tanner, P.A.; Ma, H.L.; Yu, P.K. Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong. Environ. Sci. Technol. 2008, 42, 7111–7117. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, N.J.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yu, Y.; Stüben, D. Temporal variability of trace metal mobility of urban particulate matter from Beijing—A contribution to health impact assessments of aerosols. Atmos. Environ. 2011, 45, 7248–7265. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, P.; Zhu, Y.; Xu, B.; Peng, C.; Wang, T.; Li, C.; Zeng, G. Source apportionment coupled with gas/particle partitioning theory and risk assessment of polycyclic aromatic hydrocarbons associated with size-segregated airborne particulate matter. Water Air Soil Pollut. 2016, 227, 1–15. [Google Scholar] [CrossRef]
- Langer, S.; Weschler, C.J.; Fischer, A.; Bekö, G.; Toftum, J.; Clausen, G. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atmos. Environ. 2010, 44, 2294–2301. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmos. Environ. 2010, 44, 3239–3245. [Google Scholar] [CrossRef]
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Jimenez, J.; Parshintsev, J.; Laitinen, T.; Hartonen, K.; Petäjä, T.; Kulmala, M.; Riekkola, M.L. Influence of the sampling site, the season of the year, the particle size and the number of nucleation events on the chemical composition of atmospheric ultrafine and total suspended particles. Atmos. Environ. 2012, 49, 60–68. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Chillrud, S.N.; Epstein, D.; Ross, J.M.; Sax, S.N.; Pederson, D.; Spengler, J.D.; Kinney, P.L. Elevated airborne exposures to manganese, chromium and iron of teenagers from steel dust and New York City’s subway system. Environ. Sci. Technol. 2004, 38, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.A.; Barakat, A.O.; Mostafa, A.R.; Wade, T.L. Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchem. J. 2011, 97, 234–242. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhai, Y.; Zhu, Y.; Liu, Y.; Chen, H.; Li, P.; Peng, C.; Xu, B.; Li, C.; Zeng, G. Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Sci. Total Environ. 2015, 517, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, X.; Chang, Y.; Xue, W. Heavy metal contamination in dust from kindergartens and elementary schools in Xi’an, China. Environ. Earth Sci. 2014, 71, 2701–2709. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y. Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 2014, 88, 172–182. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y.; Gao, T.; Chang, Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total Environ. 2014, 484, 27–35. [Google Scholar] [CrossRef] [PubMed]
- McGrath, D.; Zhang, C.; Carton, O.T. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ. Pollut. 2004, 127, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.; Soares, A.; Delgado, J. Geostatistical modeling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma 2006, 136, 852–864. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Xu, J. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ. Pollut. 2006, 141, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, H.; Li, B.; Huang, Y. Spatial and temporal patterns of soil organic matter in the urban-rural transition zone of Beijing. Geoderma 2007, 141, 302–310. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Boots, B. Local measures of spatial association. Ecoscience 2002, 9, 168–176. [Google Scholar]
- Dale, M.R.; Fortin, M.J. Spatial autocorrelation and statistical tests in ecology. Ecoscience 2002, 9, 162–167. [Google Scholar]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.O.; Tedesco, C.; McTighe, T.J.; Austin, C.; Kitron, U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int. J. Health Geogr. 2004, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goovaerts, P.; Jacquez, G.M. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: The case of lung cancer in Long Island, New York. Int. J. Health Geogr. 2004, 3, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, W.L.; Cossman, R.E.; Cossman, J.S.; Campbell, C.; Blanchard, T. A brief visual primer for the mapping of mortality trend data. Int. J. Health Geogr. 2004, 3, 1–17. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, C.C.; Boscoe, F.P. Effects of randomization methods on statistical inference in disease cluster detection. Health Place 2007, 13, 152–163. [Google Scholar] [CrossRef] [PubMed]
- McGrath, D.; Zhang, C. Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Appl. Geochem. 2003, 18, 1629–1639. [Google Scholar] [CrossRef]
- Zhang, C.; McGrath, D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma 2004, 119, 261–275. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Arimoto, R.; Cao, J.J.; An, Z.S.; Wang, D. Atmospheric dust aerosol over the Tibetan Plateau. J. Geophys. Res. Atmos. 2001, 106, 18471–18476. [Google Scholar] [CrossRef]
- Han, Y.; Du, P.; Cao, J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Lu, X.; Li, L.Y.; Li, N.; Yang, G.; Luo, D.; Chen, J. Chemical characteristics of spring rainwater of Xi’an City, NW China. Atmos. Environ. 2011, 45, 5058–5063. [Google Scholar] [CrossRef]
- Tonooka, Y.; Liu, J.; Kondou, Y. A survey on energy consumption in rural households in the fringes of Xi’an City. Energy Build. 2006, 38, 1335–1342. [Google Scholar] [CrossRef]
- Xi’an Municipal Bureau of Statistics. In Xi’an Statistical Yearbook in 2014; China Statistics Press: Beijing, China, 2015. (In Chinese)
- Akhter, M.S.; Madany, I.M. Heavy metals in street and house dust in Bahrain. Water Air Soil Pollut. 1993, 66, 111–119. [Google Scholar] [CrossRef]
- Lu, X.; Li, L.Y.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos. Environ. 2009, 43, 2489–2496. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, M.J.; Lopes, R.T.; de Jesus, E.F.O.; Assis, J.T.; Cesareo, R.; Barradas, C.A.A. Quantitative analysis of metals in soil using X-ray fluorescence. Spectrochim. Acta Part B Atomic Spectrosc. 2000, 55, 1189–1194. [Google Scholar] [CrossRef]
- Hartyáni, Z.; Dávid, E.; Szabó, S.; Szilágyi, V.; Horváth, T.; Tóth, Á.H. Determination of the trace elements distribution of polluted soils in Hungary by X-ray methods. Microchem. J. 2000, 67, 195–200. [Google Scholar] [CrossRef]
- Li, X.P.; Huang, C.C.; Pang, J.L. A rapid and simultaneous detection heavy metal pollutants in soil around storage cell manufactory: XRF spectroscopy. Phys. Test Chem. Anal. B Chem. Anal. XRF Spec. 2005, 41, 83–86. (In Chinese) [Google Scholar]
- Zhang, C.; Selinus, O.; Schedin, J. Statistical analyses for heavy metal contents in till and root samples in an area of southeastern Sweden. Sci. Total Environ. 1998, 212, 217–232. [Google Scholar] [CrossRef]
- Müller, G. Schwermetalle in den Sedimenten des Rheins-Veränderungenseit 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Feng, S.; Liu, H.; Zhang, N.; Lin, H.; Du, X.; Liu, Y. Contamination assessment of copper, lead, zinc and chromium in dust fall of Jinan, NE China. Environ. Earth Sci. 2012, 66, 1881–1886. [Google Scholar] [CrossRef]
- Kong, S.; Lu, B.; Ji, Y.; Zhao, X.; Chen, L.; Li, Z.; Han, B.; Bai, Z. Levels, risk assessment and sources of PM 10 fraction heavy metals in four types dust from a coal-based city. Microchem. J. 2011, 98, 280–290. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Center. The Background Values of Elements in Chinese Soils; Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Krishna, A.K.; Govil, P.K. Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ. Geol. 2008, 54, 1465–1472. [Google Scholar] [CrossRef]
- Huo, X.N.; Zhang, W.W.; Sun, D.F.; Li, H.; Zhou, L.D.; Li, B.G. Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. Int. J. Environ. Res. Public Health 2011, 8, 2074–2089. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. Royal Stat. Soc. Ser. B 1964, 26, 211–252. [Google Scholar]
- Jobson, J.D. Applied Multivariate Data Analysis, Regression and Experimental Design; Springer: New York, NY, USA, 1991. [Google Scholar]
- Zhang, C.; Zhang, S. A robust-symmetric mean: A new way of mean calculation for environmental data. GeoJournal 1996, 40, 209–212. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, X.; Chen, H.; Xu, B.; Zhu, L.; Li, C.; Zeng, G. Source identification and potential ecological risk assessment of heavy metals in PM 2.5 from Changsha. Sci. Total Environ. 2014, 493, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.L.; Li, X.; Shi, W.; Cheung, S.C.N.; Thornton, I. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci. Total Environ. 2006, 356, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, T.B.; Lei, M.; Xie, Y.F.; Zhou, G.; Song, B. Concentrations and risk of heavy metals in surface soil and dust in urban squares and school campus in Beijing. Geogr. Res. 2010, 29, 989–996. (In Chinese) [Google Scholar]
- Meza-Figueroa, D.; de la O-Villanueva, M.; de la Parra, M.L. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos. Environ. 2007, 41, 276–288. [Google Scholar] [CrossRef]
- Tong, S.T.; Lam, K.C. Are nursery schools and kindergartens safe for our kids? The Hong Kong study. Sci. Total Environ. 1998, 216, 217–225. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Hou, Q.; Duan, H. Accumulation and health risk assessment of heavy metals in kindergarten surface dust in the city of Kaifeng. Acta Sci. Circumstantiate 2011, 31, 583–593. (In Chinese) [Google Scholar]
- Darus, F.M.; Nasir, R.A.; Sumari, S.M.; Ismail, Z.S.; Omar, N.A. Heavy metals composition of indoor dust in nursery schools building. Procedia Soc. Behav. Sci. 2012, 38, 169–175. [Google Scholar] [CrossRef]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.L.; Wong, S.C.; Shi, W.; Thornton, I. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ. Pollut. 2004, 129, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, X.; Yang, G. Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods. Catena 2012, 98, 73–78. [Google Scholar] [CrossRef]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Monaci, F.; Bargagli, R. Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut. 1997, 100, 89–98. [Google Scholar] [CrossRef]
Channel | Type | Line | X-Tal. | Collimator (µm) | Detector | X-ray Tube Filter | Voltage (kV) | Current (mA) | Angle 2θ (°) |
---|---|---|---|---|---|---|---|---|---|
As | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 33.963 |
Ba | Gonio | Lα | LiF 200 | 300 | FC | None | 50 | 60 | 87.200 |
Co | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 52.792 |
Cr | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 69.368 |
Cu | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 45.035 |
Mn | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 62.982 |
Ni | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 48.663 |
Pb | Gonio | Lβ | LiF 200 | 300 | SC | None | 60 | 50 | 28.251 |
V | Gonio | Kα | LiF 200 | 300 | FC | None | 50 | 60 | 123.171 |
Zn | Gonio | Kα | LiF 200 | 300 | SC | None | 60 | 50 | 41.801 |
Element | Hermosillo | Tehran | Shah Alam | Hong Kong | Beijing | Kaifeng | Xi’an |
---|---|---|---|---|---|---|---|
Cu | 26.34 | 225.3 | 30.19 | 247.38 | 57.3 | 38.92 | 62.1 |
Pb | 36.15 | 257.4 | 31.24 | 199.96 | 69.4 | 242.99 | 151.6 |
Zn | 387.98 | 873.2 | 148.71 | 2293.56 | 301 | 297.32 | 390.7 |
Spatial Autocorrelation | As | Ba | Co | Cr | Cu | Mn | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Not significant | 36.31 | 83.44 | 67.52 | 91.72 | 43.95 | 69.42 | 32.48 | 54.78 | 61.78 | 66.88 |
High-high | 25.48 | 1.27 | 9.55 | 3.18 | 21.66 | 14.65 | 22.93 | 14.65 | 12.74 | 6.37 |
Low-low | 17.83 | 7.64 | 8.92 | 0.00 | 14.65 | 4.46 | 21.02 | 9.55 | 9.55 | 9.55 |
Low-high | 8.92 | 2.55 | 4.46 | 5.10 | 10.19 | 8.92 | 10.19 | 12.10 | 8.92 | 10.83 |
High-low | 11.46 | 5.10 | 9.55 | 0.00 | 9.55 | 2.55 | 13.38 | 8.92 | 7.01 | 6.37 |
Heavy Metal | Pollution Status | Spatial Autocorrelation | ||||
---|---|---|---|---|---|---|
Not Significant | High-High | Low-Low | Low-High | High-Low | ||
As | Polluted | 3.82 | 9.56 | - | - | 1.91 |
Unpolluted | 32.49 | 15.92 | 17.83 | 8.92 | 9.55 | |
Ba | Polluted | 57.96 | 1.27 | 3.18 | 1.27 | 5.10 |
Unpolluted | 25.48 | 4.46 | 1.28 | - | ||
Co | Polluted | 67.52 | 9.55 | 8.92 | 4.46 | 9.55 |
Unpolluted | - | - | - | - | - | |
Cr | Polluted | 90.45 | 3.18 | - | 4.46 | - |
Unpolluted | 1.27 | - | - | 0.64 | - | |
Cu | Polluted | 43.95 | 21.66 | 12.1 | 8.28 | 9.55 |
Unpolluted | - | - | 2.55 | 1.91 | ||
Mn | Polluted | - | - | - | - | - |
Unpolluted | 69.42 | 14.65 | 4.46 | 8.92 | 2.55 | |
Ni | Polluted | - | 4.46 | - | - | - |
Unpolluted | 32.48 | 18.47 | 21.02 | 10.19 | 13.38 | |
Pb | Polluted | 54.78 | 14.65 | 9.55 | 12.1 | 8.92 |
Unpolluted | - | - | - | - | - | |
V | Polluted | - | - | - | - | - |
Unpolluted | 61.78 | 12.74 | 9.55 | 8.92 | 7.01 | |
Zn | Polluted | 65.61 | 6.37 | 8.92 | 10.19 | 6.37 |
Unpolluted | 1.27 | - | 0.63 | 0.64 | - |
Element | Component | Communalities | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
As | 0.845 | 0.115 | 0.267 | −0.117 | 0.007 | 0.812 |
Ba | 0.015 | 0.814 | 0.334 | 0.114 | 0.220 | 0.837 |
Co | 0.005 | 0.029 | −0.022 | 0.010 | 0.956 | 0.915 |
Cr | 0.169 | 0.023 | 0.024 | 0.908 | 0.008 | 0.855 |
Cu | 0.742 | 0.004 | 0.102 | 0.345 | 0.057 | 0.759 |
Mn | 0.515 | 0.442 | 0.102 | 0.386 | −0.069 | 0.625 |
Ni | 0.816 | 0.268 | 0.100 | 0.247 | −0.070 | 0.813 |
Pb | 0.269 | 0.132 | 0.677 | 0.249 | −0.330 | 0.719 |
V | 0.275 | 0.878 | −0.010 | −0.061 | −0.135 | 0.868 |
Zn | 0.260 | 0.149 | 0.828 | −0.084 | 0.130 | 0.799 |
Eigenvalue | 2.44 | 1.76 | 1.43 | 1.25 | 1.12 | |
% of variance | 24.4 | 17.6 | 14.3 | 12.5 | 11.2 | |
% of cumulative | 24.4 | 42.0 | 56.3 | 68.8 | 80.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lu, X.; Gao, T.; Chang, Y. Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China. Int. J. Environ. Res. Public Health 2016, 13, 555. https://doi.org/10.3390/ijerph13060555
Chen H, Lu X, Gao T, Chang Y. Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China. International Journal of Environmental Research and Public Health. 2016; 13(6):555. https://doi.org/10.3390/ijerph13060555
Chicago/Turabian StyleChen, Hao, Xinwei Lu, Tianning Gao, and Yuyu Chang. 2016. "Identifying Hot-Spots of Metal Contamination in Campus Dust of Xi’an, China" International Journal of Environmental Research and Public Health 13, no. 6: 555. https://doi.org/10.3390/ijerph13060555