Low-Level Toxic Metal Exposure in Healthy Weaning-Age Infants: Association with Growth, Dietary Intake, and Iron Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Blood Tests
2.3. Definition
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Subjects
3.2. Blood Toxic Metal Levels and Their Interrelationship
3.3. Association between Blood Toxic Metal Levels and Growth Parameters
3.4. The Relationship between Feeding and Dietary Factors and Blood Toxic Metal Levels
3.5. The Relationship between Iron Deficiency and Blood Toxic Metal Levels
3.6. The Relationship between Other Sociodemographic Factors and Blood Toxic Metal Levels
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Food Safety Authority; EFSA Panel on Contaminants in the Food Chain (Contam). Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Food Additives and Contaminants; Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series, no. 922; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic; Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2007.
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2012.
- Gardner, R.M.; Kippler, M.; Tofail, F.; Bottai, M.; Hamadani, J.; Grander, M.; Nermell, B.; Palm, B.; Rasmussen, K.M.; Vahter, M. Environmental exposure to metals and children’s growth to age 5 years: A prospective cohort study. Am. J. Epidemiol. 2013, 177, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Schoeters, G.; Den Hond, E.; Zuurbier, M.; Naginiene, R.; van den Hazel, P.; Stilianakis, N.; Ronchetti, R.; Koppe, J.G. Cadmium and children: Exposure and health effects. Acta Paediatr. Suppl. 2006, 95, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Akagi, H.; Grandjean, P.; Takizawa, Y.; Weihe, P. Methylmercury dose estimation from umbilical cord concentrations in patients with minamata disease. Environ. Res. 1998, 77, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Kaji, M.; Nishi, Y. Lead and growth. Clin. Pediatr. Endocrinol. 2006, 15, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Diamond, D.; Emond, J.A.; Baker, E.R.; Korrick, S.A.; Karagas, M.R. Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ. Health Perspect. 2016, 124, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Doyle, P.; Wang, D.; Hwang, Y.H.; Chen, P.C. Does prenatal cadmium exposure affect fetal and child growth? Occup. Environ. Med. 2011, 68, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.C.; Kulkarni, S.S.; Lim, Y.H.; Kim, E.; Ha, M.; Park, H.; Kim, Y.; Kim, B.N.; Chang, N.; Oh, S.Y.; et al. Postnatal growth following prenatal lead exposure and calcium intake. Pediatrics 2014, 134, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huo, X.; Yekeen, T.A.; Zheng, Q.; Zheng, M.; Xu, X. Effects of lead and cadmium exposure from electronic waste on child physical growth. Environ. Sci. Pollut. Res. Int. 2013, 20, 4441–4447. [Google Scholar] [CrossRef] [PubMed]
- Min, K.B.; Min, J.Y.; Cho, S.I.; Kim, R.; Kim, H.; Paek, D. Relationship between low blood lead levels and growth in children of white-collar civil servants in Korea. Int. J. Hyg. Environ. Health 2008, 211, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). CDC’s Healthy Homes and Lead Poisoning Prevention Program. Available online: https://www.cdc.gov/nceh/lead/data/definitions.htm (accessed on 27 January 2017).
- Schell, L.M.; Denham, M.; Stark, A.D.; Parsons, P.J.; Schulte, E.E. Growth of infants’ length, weight, head and arm circumferences in relation to low levels of blood lead measured serially. Am. J. Hum. Biol. 2009, 21, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, M.; Menditto, A.; Rossi, B.; Lyon, T.D.B.; Fell, G.S. Environmental exposure to metals of newborns, infants and young children. Microchem. J. 2000, 67, 351–361. [Google Scholar] [CrossRef]
- Claus Henn, B.; Ettinger, A.S.; Hopkins, M.R.; Jim, R.; Amarasiriwardena, C.; Christiani, D.C.; Coull, B.A.; Bellinger, D.C.; Wright, R.O. Prenatal arsenic exposure and birth outcomes among a population residing near a mining-related superfund site. Environ. Health Perspect. 2016, 124, 1308–1315. [Google Scholar] [PubMed]
- Kim, B.M.; Lee, B.E.; Hong, Y.C.; Park, H.; Ha, M.; Kim, Y.J.; Kim, Y.; Chang, N.; Kim, B.N.; Oh, S.Y.; et al. Mercury levels in maternal and cord blood and attained weight through the 24 months of life. Sci. Total Environ. 2011, 410–411, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.L.; Zhao, Y.C.; Wang, X.C.; Gu, J.L.; Sun, Z.J.; Zhang, Y.L.; Wang, J.X. Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol. Trace Elem. Res. 2009, 132, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Rollin, H.B.; Channa, K.; Olutola, B.G.; Odland, J.O. Evaluation of in utero exposure to arsenic in South Africa. Sci. Total Environ. 2017, 575, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Delvaux, I.; Van Cauwenberghe, J.; Den Hond, E.; Schoeters, G.; Govarts, E.; Nelen, V.; Baeyens, W.; Van Larebeke, N.; Sioen, I. Prenatal exposure to environmental contaminants and body composition at age 7–9 years. Environ. Res. 2014, 132, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.A.; Perera, F.P.; Majewska, R.; Mrozek-Budzyn, D.; Mroz, E.; Roen, E.L.; Sowa, A.; Jacek, R. Depressed height gain of children associated with intrauterine exposure to polycyclic aromatic hydrocarbons (PAH) and heavy metals: The cohort prospective study. Environ. Res. 2015, 136, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Dhooge, W.; Den Hond, E.; Koppen, G.; Bruckers, L.; Nelen, V.; Van De Mieroop, E.; Bilau, M.; Croes, K.; Baeyens, W.; Schoeters, G.; et al. Internal exposure to pollutants and body size in flemish adolescents and adults: Associations and dose-response relationships. Environ. Int. 2010, 36, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Park, J.S.; Shin, S.; Yang, H.R.; Moon, J.S.; Ko, J.S. Mercury exposure in healthy Korean weaning-age infants: Association with growth, feeding and fish intake. Int. J. Environ. Res. Public Health 2015, 12, 14669–14689. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Narbad, A.; Chen, W. Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 2015, 7, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F. Food based complementary feeding strategies for breastfed infants: What’s the evidence that it matters? Nutr. Today 2014, 49, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Cho, Y.-H.; Park, S.-O.; Kye, S.-H.; Kim, B.-H.; Hahm, T.-S.; Kim, M.; Ok Lee, J.; Kim, C.-I. Dietary exposure of the Korean population to arsenic, cadmium, lead and mercury. J. Food Compos. Anal. 2006, 19, S31–S37. [Google Scholar] [CrossRef]
- Rebelo, F.M.; Caldas, E.D. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 2016, 151, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Dorea, J.G.; Donangelo, C.M. Early (in uterus and infant) exposure to mercury and lead. Clin. Nutr. 2006, 25, 369–376. [Google Scholar] [CrossRef] [PubMed]
- De Castro, C.S.; Arruda, A.F.; Da Cunha, L.R.; SouzaDe, J.R.; Braga, J.W.; Dorea, J.G. Toxic metals (Pb and Cd) and their respective antagonists (Ca and Zn) in infant formulas and milk marketed in Brasilia, Brazil. Int. J. Environ. Res. Public Health 2010, 7, 4062–4077. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, W.I.; Kunhikrishnan, A.; Kang, D.W.; Kim, D.H.; Lee, Y.J.; Kim, Y.J.; Kim, C.T. Determination of arsenic species in rice grains using HPLC-ICP-MS. Food Sci. Biotechnol. 2013, 22, 1509–1513. [Google Scholar] [CrossRef]
- Chou, W.C.; Chen, J.W.; Liao, C.M. Contribution of inorganic arsenic sources to population exposure risk on a regional scale. Environ. Sci. Pollut. Res. Int. 2016, 23, 14173–14182. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Watanabe, C.; Inaoka, T.; Sekiyama, M.; Sudo, N.; Bokul, M.H.; Ohtsuka, R. Arsenic in cooked rice in Bangladesh. Lancet 2002, 360, 1839–1840. [Google Scholar] [CrossRef]
- Cleland, B.; Tsuchiya, A.; Kalman, D.A.; Dills, R.; Burbacher, T.M.; White, J.W.; Faustman, E.M.; Marien, K. Arsenic exposure within the Korean community (United States) based on dietary behavior and arsenic levels in hair, urine, air, and water. Environ. Health Perspect. 2009, 117, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.S.; Kang, I.G.; Lee, S.G.; Eom, S.Y.; Kim, Y.D.; Oh, S.Y.; Kwon, H.J.; Park, K.S.; Kim, H.; Choi, B.S.; et al. Arsenic exposure and seafood intake in Korean adults. Hum. Exp. Toxicol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Woo, H.D.; Joo, J.; Park, K.S.; Oh, S.Y.; Kwon, H.J.; Park, J.D.; Hong, Y.S.; Sohn, S.J.; Yoon, H.J.; et al. Estimated long-term dietary exposure to lead, cadmium, and mercury in young Korean children. Eur. J. Clin. Nutr. 2014, 68, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Hwang, M.; Kim, H.; Ryu, S.; Lee, K.; Choi, K.; Paek, D. Early snapshot on exposure to environmental chemicals among Korean adults-results of the first Korean national environmental health survey (2009–2011). Int. J. Hyg. Environ. Health 2016, 219, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Chang, J.Y.; Hong, J.; Ko, J.S.; Seo, J.K.; Shin, S.; Lee, E.H. Nutritional zinc status in weaning infants: Association with iron deficiency, age, and growth profile. Biol. Trace Elem. Res. 2012, 150, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Borgna-Pignatti, C.; Marsella, M. Iron deficiency in infancy and childhood. Pediatr. Ann. 2008, 37, 329–337. [Google Scholar] [PubMed]
- Lozoff, B.; Beard, J.; Connor, J.; Barbara, F.; Georgieff, M.; Schallert, T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006, 64, S34–S43. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, R.; Mehta, D.I. Gastrointestinal tract. Pediatrics 2004, 113, 1044–1050. [Google Scholar] [PubMed]
- World Health Organization. Anthro Software (Version 3.2.2, January 2011). Available online: http://www.who.int/childgrowth/software/en (accessed on 1 April 2017).
- Centers for Disease Control and Prevention. Blood mercury levels in young children and childbearing-aged women—United States, 1999–2002. MMWR Morb. Mortal Wkly. Rep. 2004, 53, 1018–1020. [Google Scholar]
- Norma, B.L.; Richard, S. Iron–deficiency anemia. In Nelson Textbook of Pediatrics, 19th ed.; Kliegman, R.M., Stanton, B.F., St. Geme, J.W., Schor, N.F., Behrman, R.E., Eds.; Elsevier: Philadelphia, PA, USA, 2011; p. 1655. [Google Scholar]
- Ha, M.; Kwon, H.J.; Leem, J.H.; Kim, H.C.; Lee, K.J.; Park, I.; Lim, Y.W.; Lee, J.H.; Kim, Y.; Seo, J.H.; et al. Korean environmental health survey in children and adolescents (KOREHS-C): Survey design and pilot study results on selected exposure biomarkers. Int. J. Hyg. Environ Health 2014, 217, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Chung, J.Y.; An, H.S.; Park, S.Y.; Kim, B.G.; Bae, J.W.; Han, M.; Cho, Y.J.; Hong, Y.S. Biomonitoring of lead, cadmium, total mercury, and methylmercury levels in maternal blood and in umbilical cord blood at birth in South Korea. Int. J. Environ. Res. Public Health 2015, 12, 13482–13493. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Angerer, J.; Ewers, U.; Heudorf, U.; Wilhelm, M. Revised and new reference values for environmental pollutants in urine or blood of children in Germany derived from the German environmental survey on children 2003–2006 (GerES IV). Int. J. Hyg. Environ. Health 2009, 212, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, A.L.; Kumar, R.; Goessler, W.; Thirumaran, R.; Gurzau, E.; Koppova, K.; Rudnai, P.; Leonardi, G.; Fletcher, T.; Vahter, M. Metabolism of low-dose inorganic arsenic in a central European population: Influence of sex and genetic polymorphisms. Environ. Health Perspect. 2007, 115, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Mayo Foundation for Medical Education and Research. Arsenic, Blood; 2013. Available online: http://www.mayomedicallaboratories.com/test-catalog/clinical+and+interpretive/8645 (accessed on 11 February 2017).
- Concha, G.; Nermell, B.; Vahter, M.V. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ. Health Perspect. 1998, 106, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Conrad, A.; Becker, K.; Kolossa-Gehring, M.; Seiwert, M.; Seifert, B. Twenty years of the German environmental survey (GerES): Human biomonitoring—Temporal and spatial (west Germany/east Germany) differences in population exposure. Int. J. Hyg. Environ. Health 2007, 210, 271–297. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.P.; Umezaki, M.; Fujiwara, T.; Watanabe, C. Association of cord blood levels of lead, arsenic, and zinc and home environment with children neurodevelopment at 36 months living in Chitwan valley, Nepal. PLoS ONE 2015, 10, e0120992. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Chen, Y.; Ahsan, H.; Slavkovich, V.; van Geen, A.; Parvez, F.; Graziano, J. Blood arsenic as a biomarker of arsenic exposure: Results from a prospective study. Toxicology 2006, 225, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, C.K.; Moon, C.S.; Choi, I.J.; Lee, K.J.; Yi, S.M.; Jang, B.K.; Yoon, B.J.; Kim, D.S.; Peak, D.; et al. Korea national survey for environmental pollutants in the human body 2008: Heavy metals in the blood or urine of the Korean population. Int. J. Hyg. Environ. Health 2012, 215, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Endo, Y.; Nakajima, Y.; Ikebe, M.; Ogawa, M.; Fujitani, N.; Endo, G. HPLC-ICP-MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure. J. Occup. Health 2007, 49, 217–223. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidlines for Driniking-Water Quality, 3rd ed.; Recommendations Volume 1; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Ahmed, S.; Rekha, R.S.; Ahsan, K.B.; Doi, M.; Grander, M.; Roy, A.K.; Ekstrom, E.C.; Wagatsuma, Y.; Vahter, M.; Raqib, R. Arsenic exposure affects plasma insulin-like growth factor 1 (IGF-1) in children in rural Bangladesh. PLoS ONE 2013, 8, e81530. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Marchiset-Ferlay, N.; Savanovitch, C.; Sauvant-Rochat, M.P. What is the best biomarker to assess arsenic exposure via drinking water? Environ. Int. 2012, 39, 150–171. [Google Scholar] [CrossRef] [PubMed]
- Haschke, F.; van’t Hof, M.A.; Euro-Growth Study Group. Euro-growth references for breast-fed boys and girls: Influence of breast-feeding and solids on growth until 36 months of age. J. Pediatr. Gastroenterol. Nutr. 2000, 31 (Suppl. 1), S60–S71. [Google Scholar] [CrossRef] [PubMed]
- Fangstrom, B.; Moore, S.; Nermell, B.; Kuenstl, L.; Goessler, W.; Grander, M.; Kabir, I.; Palm, B.; Arifeen, S.E.; Vahter, M. Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environ. Health Perspect. 2008, 116, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.L.; Salehi, L.; Birken, C.S.; Carsley, S.; Mamdani, M.; Thorpe, K.E.; Lebovic, G.; Khovratovich, M.; Parkin, P.C. Association between total duration of breastfeeding and iron deficiency. Pediatrics 2013, 131, e1530–e1537. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Chang, J.Y.; Shin, S.; Oh, S. Breastfeeding and red meat intake are associated with iron status in healthy Korean weaning-age infants. J. Korean Med. Sci. 2017, in press. [Google Scholar]
- Kim, Y.; Park, S. Iron deficiency increases blood concentrations of neurotoxic metals in children. Korean J. Pediatr. 2014, 57, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.N.; Greenberg, G.I.; Pollock, M.C.; Lewis, A.S. A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci. Total Environ. 2014, 496, 299–313. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Age, months a | 11.4 (10.5, 12.0) |
Sex, n | |
Male | 97 |
Female | 113 |
Birth order | |
First | 157 |
≥Second | 53 |
Mother’s age at delivery | |
<30 years | 22 |
≥30 years | 188 |
Type of birth, n | |
Vaginal delivery | 148 |
Surgical delivery | 62 |
Gestational age, weeks a | 39.0 (38.0, 40.0) |
Anthropometry, Z-score b | |
Birthweight, kg a | 3.24 (3.02, 3.48) |
Birthweight | −0.08 ± 0.73 |
Weight for age | 0.65 ± 0.82 |
WAZ–BWZ | 0.73 ± 0.89 |
Height for age | 0.53 ± 1.09 |
Head circumference at birth, cm c | 34.0 (33.5, 35.0) |
Head circumference at birth c | 0.08 ± 0.87 |
Head circumference for age | 0.44 ± 0.83 |
Post-birth growth of head circumference c,d | 0.29 ± 1.12 |
Feeding type, n | |
Exclusively/mostly breastfed | 95 |
Mixed fed | 49 |
Mostly formula fed | 66 |
Duration of breastfeeding, months a | 10.0 (5.0, 11.4) |
Duration of CF intake, months a | 5.0 (5.0, 6.0) |
Adequacy of rice-based food intake, n | |
Adequate | 163 |
Poor | 47 |
Duration of red meat intake, months a | 5.0 (4.0, 6.0) |
Adequacy of red meat intake, n | |
Adequate | 166 |
Poor | 44 |
Regular fish intake, n | |
Presence | 121 |
Absence | 89 |
Duration of fish intake, months a | 1.0 (0.0, 3.0) |
Iron status, n | |
Deficiency | 44 |
No deficiency | 166 |
Iron deficiency anemia | 18 |
Mother’s smoking before pregnancy | |
No | 202 |
Yes | 8 |
Father’s indoor smoking | |
No | 164 |
Yes | 46 |
Geometric Mean | Percentiles | Maximum | |||||
---|---|---|---|---|---|---|---|
(95% CI) | 10 | 25 | 50 | 75 | 90 | Value | |
Blood metal level | |||||||
As (μg/L) | 1.94 (1.62, 2.26) | 0.5 | 0.8 | 1.2 | 2.0 | 4.4 | 11.9 |
Cd (μg/L) | 0.067 (0.06, 0.073) | 0.02 | 0.04 | 0.05 | 0.09 | 0.11 | 0.4 |
Hg (μg/L) | 0.99 (0.90, 1.08) | 0.34 | 0.56 | 0.8 | 1.24 | 1.8 | 4.2 |
Pb (μg/dL) | 0.96 (0.86, 1.05) | 0.12 | 0.52 | 0.83 | 1.23 | 1.82 | 3.5 |
Dependent Variables | Independent Variables | Unadjusted | Adjusted | ||
---|---|---|---|---|---|
B (SE) | p-Value | B (SE) | p-Value | ||
WAZ–BWZ | BWZ | −0.601 (0.073) | <0.001 | −0.586 (0.073) | <0.001 |
Iron deficiency | 0.217 (0.150) | 0.150 | 0.223 (0.131) | 0.09 | |
Blood Pb levels | −0.202 (0.089) | 0.024 | −0.238 (0.078) | 0.003 | |
HCAZ | BWZ | 0.352 (0.075) | <0.001 | 0.358 (0.074) | <0.001 |
Blood Pb levels | −0.206 (0.083) | 0.014 | −0.213 (0.078) | 0.007 | |
Blood As levels | −0.057 (0.024) | 0.018 | −0.053 (0.022) | 0.020 |
Parameters | As a (μg/L) | Cd a (μg/L) | Hg a (μg/L) | Pb a (μg/dL) |
---|---|---|---|---|
Feeding type | ||||
Exclusively/mostly breastfed | 1.4 (1.0, 2.1) | 0.06 (0.05, 0.10) | 1.1 (0.7, 1.6) | 1.12 (0.77, 1.63) |
Mixed fed | 1.0 (0.7, 1.7) | 0.04 (0.03, 0.08) | 0.8 (0.5, 1.1) | 0.81 (0.51, 1.11) |
Mostly formula fed | 1.1 (0.6, 2.1) | 0.05 (0.03, 0.07) | 0.7 (0.4, 1.0) | 0.62 (0.39, 0.82) |
p-Value b | 0.065 | 0.001 | <0.001 | <0.001 |
Adequacy of rice-based food intake | ||||
Adequate | 1.4 (0.9, 2.2) | 0.06 (0.04, 0.10) | 0.8 (0.6, 1.3) | 0.74 (0.51, 1.12) |
Poor | 1.0 (0.6, 1.7) | 0.05 (0.03, 0.07) | 0.7 (0.5, 1.2) | 1.06 (0.77, 1.58) |
p-Value | 0.013 | 0.079 | 0.219 | 0.001 |
Adequacy of red meat intake | ||||
Adequate | 1.3 (0.9, 2.1) | 0.06 (0.04, 0.10) | 0.8 (0.6, 1.3) | 0.75 (0.51, 1.14) |
Poor | 1.0 (0.7, 1.9) | 0.05, 0.03, 0.07) | 0.8 (0.5, 1.2) | 1.04 (0.77, 1.53) |
p-Value | 0.069 | 0.236 | 0.435 | 0.004 |
Regular fish intake | ||||
Presence | 1.5 (0.9, 2.9) | 0.05 (0.04, 0.10) | 0.9 (0.7, 1.3) | 0.74 (0.51, 1.20) |
Absence | 1.0 (0.7, 1.6) | 0.05 (0.04, 0.08) | 0.7 (0.5, 1.2) | 0.97 (0.59, 1.27) |
p-Value | <0.001 | 0.678 | 0.006 | 0.063 |
Iron Status | ||||
Deficiency | 1.4 (0.8, 2.0) | 0.07 (0.05, 0.10) | 1.0 (0.6, 1.4) | 1.24 (0.84, 1.64) |
No deficiency | 1.2 (0.8, 2.0) | 0.05 (0.03, 0.08) | 0.8 (0.5, 1.2) | 0.75 (0.51, 1.10) |
p-Value | 0.752 | 0.029 | 0.134 | <0.001 |
Iron deficiency anemia | ||||
Presence | 1.5 (1.0, 2.0) | 0.06 (0.05, 0.08) | 0.9 (0.6, 1.5) | 1.44 (1.14, 1.80) |
Absence | 1.2 (0.8, 2.0) | 0.05 (0.04, 0.01) | 0.8 (0.6, 1.2) | 0.79 (0.51, 1.14) |
p-Value | 0.279 | 0.419 | 0.390 | <0.001 |
Variables | Unadjusted | Adjusted | ||
---|---|---|---|---|
B (SE) | p-Value | B (SE) | p-Value | |
Log (log As) | ||||
Duration of breastfeeding | 0.003 (0.001) | 0.008 | 0.004 (0.001) | 0.002 |
Duration of CF | 0.009 (0.003) | 0.001 | 0.006 (0.003) | 0.017 |
Adequate rice-based food intake | 0.031 (0.011) | 0.007 | 0.022 (0.011) | 0.044 |
Regular fish intake | 0.038 (0.009) | <0.001 | 0.036 (0.009) | <0.001 |
Mother’s age at delivery (≥30 years) | 0.035 (0.015) | 0.026 | 0.029 (0.014) | 0.044 |
Log Hg | ||||
Monthly age | 0.044 (0.013) | 0.001 | 0.021 (0.012) | 0.097 |
Duration of breastfeeding | 0.028 (0.005) | <0.001 | 0.028 (0.005) | <0.001 |
Duration of fish intake | 0.033 (0.010) | 0.002 | 0.036 (0.010) | <0.001 |
Variables | Unadjusted Odds Ratio | 95% CI | p-Value | Adjusted Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|---|---|
Cd | ||||||
Monthly age | 1.7 | 1.3, 2.3 | <0.001 | 1.7 | 1.3, 2.4 | 0.001 |
Male sex | 1.9 | 1.1, 3.4 | 0.028 | 1.8 | 1.0, 3.4 | 0.059 |
Duration of breastfeeding | 1.2 | 1.1, 1.3 | <0.001 | 1.1 | 1.0, 1.2 | 0.019 |
Iron deficiency | 3.0 | 1.3, 7.0 | 0.008 | 2.3 | 0.9, 5.9 | 0.071 |
Pb | ||||||
Duration of breastfeeding | 1.3 | 1.2, 1.4 | <0.001 | 1.3 | 1.2, 1.4 | <0.001 |
Iron deficiency anemia | 19.3 | 2.5, 147.7 | 0.004 | 9.9 | 1.3, 78.1 | 0.030 |
Father’s indoor smoking | 2.5 | 1.2, 5.0 | 0.013 | 2.7 | 1.2, 6.0 | 0.017 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Chang, J.Y.; Hong, J.; Shin, S.; Park, J.S.; Oh, S. Low-Level Toxic Metal Exposure in Healthy Weaning-Age Infants: Association with Growth, Dietary Intake, and Iron Deficiency. Int. J. Environ. Res. Public Health 2017, 14, 388. https://doi.org/10.3390/ijerph14040388
Choi J, Chang JY, Hong J, Shin S, Park JS, Oh S. Low-Level Toxic Metal Exposure in Healthy Weaning-Age Infants: Association with Growth, Dietary Intake, and Iron Deficiency. International Journal of Environmental Research and Public Health. 2017; 14(4):388. https://doi.org/10.3390/ijerph14040388
Chicago/Turabian StyleChoi, Jungil, Ju Young Chang, Jeana Hong, Sue Shin, Jeong Su Park, and Sohee Oh. 2017. "Low-Level Toxic Metal Exposure in Healthy Weaning-Age Infants: Association with Growth, Dietary Intake, and Iron Deficiency" International Journal of Environmental Research and Public Health 14, no. 4: 388. https://doi.org/10.3390/ijerph14040388
APA StyleChoi, J., Chang, J. Y., Hong, J., Shin, S., Park, J. S., & Oh, S. (2017). Low-Level Toxic Metal Exposure in Healthy Weaning-Age Infants: Association with Growth, Dietary Intake, and Iron Deficiency. International Journal of Environmental Research and Public Health, 14(4), 388. https://doi.org/10.3390/ijerph14040388