Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.1.1. Strava Metro Data
- We removed records on weekend days (Saturday and Sunday);
- We counted cycling trips by street and time slot (1-h long, e.g., 7:00–7:59 a.m.);
- We removed streets with abnormal travel volumes. These streets have a smaller number of all-purpose trips than commuting trips.
2.1.2. Environmental Characteristics Data
2.1.3. Comparison of Strava Cycling Volumes and Regular Cycling Volumes
2.2. Recreational Cycling Behaviour
2.3. Environmental Characteristics
2.3.1. Socio-Economic Factors
2.3.2. Urban Form Factors
2.3.3. Road factors
2.3.4. Land Use and Green Space and Factors
2.3.5. Traffic-Related Factors
3. Results and Discussion
4. Conclusions
4.1. Limitations
4.2. Future Works
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cavill, N.; Davis, A. Cycling and Health: What’s the Evidence? Cycling England: London, UK, 2007. [Google Scholar]
- Forsyth, A.; Krizek, K.J.; Agrawal, A.W.; Stonebraker, E. Reliability testing of the Pedestrian and Bicycling Survey (PABS) method. J. Phys. Act. Health 2012, 9, 677–688. [Google Scholar] [CrossRef]
- Oja, P.; Vuori, I.; Paronen, O. Daily walking and cycling to work: Their utility as health-enhancing physical activity. Patient Educ. Couns. 1998, 33, S87–S94. [Google Scholar] [CrossRef]
- Oja, P.; Titze, S.; Bauman, A.; de Geus, B.; Krenn, P.; Reger-Nash, B.; Kohlberger, T. Health benefits of cycling: A systematic review. Scand. J. Med. Sci. Sports 2011, 21, 496–509. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R.; Bassett, D.R.; Dannenberg, A.L. Walking and cycling to health: A comparative analysis of city, state, and international data. Am. J. Public Health 2010, 100, 1986–1992. [Google Scholar] [CrossRef]
- Taddei, C.; Gnesotto, R.; Forni, S.; Bonaccorsi, G.; Vannucci, A.; Garofalo, G. Cycling promotion and non-communicable disease prevention: Health impact assessment and economic evaluation of cycling to work or school in Florence. PLoS ONE 2015, 10, e0125491. [Google Scholar] [CrossRef]
- Wen, L.M.; Rissel, C. Inverse associations between cycling to work, public transport, and overweight and obesity: Findings from a population based study in Australia. Prev. Med. 2008, 46, 29–32. [Google Scholar]
- Maizlish, N.; Woodcock, J.; Co, S.; Ostro, B.; Fanai, A.; Fairley, D. Health co-benefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay area. Am. J. Public Health 2013, 103, 703–709. [Google Scholar] [CrossRef]
- Woodcock, J.; Givoni, M.; Morgan, A. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling tool (ITHIM). PLoS ONE 2013, 8, e51462. [Google Scholar] [CrossRef]
- De Hartog, J.; Boogaard, H.; Nijland, H.; Hoek, G. Do the health benefits of cycling outweigh the risks? Environ. Health Perspect. 2010, 118, 1109–1116. [Google Scholar] [CrossRef]
- Tainio, M.; de Nazelle, A.J.; Götschi, T.; Kahlmeier, S.; Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; de Sá, T.H.; Kelly, P.; Woodcock, J. Can air pollution negate the health benefits of cycling and walking? Prev. Med. 2016, 87, 233–236. [Google Scholar] [CrossRef]
- Rojas-Rueda, D.; de Nazelle, A.; Tainio, M.; Nieuwenhuijsen, M.J. The health risks and benefits of cycling in urban environments compared with car use: Health impact assessment study. BMJ 2011, 343, 4521. [Google Scholar] [CrossRef]
- Garrard, J.; Rose, G.; Lo, S.K. Promoting transportation cycling for women: The role of bicycle infrastructure. Prev. Med. 2008, 46, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Salmon, J.; Campbell, K.; Baur, L.; Garnett, S.; Crawford, D. How do perceptions of local neighborhood relate to adolescents’ walking and cycling? Am. J. Health Promot. 2005, 20, 139–147. [Google Scholar] [CrossRef]
- Hunt, J.D.; Abraham, J.E. Influences on bicycle use. Transportation 2007, 34, 453. [Google Scholar] [CrossRef]
- De Vries, S.I.; Hopman-Rock, M.; Bakker, I.; Hirasing, R.A.; van Mechelen, W. Built environmental correlates of walking and cycling in Dutch urban children: Results from the SPACE study. Int. J. Environ. Res. Public Health 2010, 7, 2309–2324. [Google Scholar] [CrossRef]
- Fraser, S.; Lock, K. Cycling for transport and public health: A systematic review of the effect of the environment on cycling. Eur. J. Public Health 2010, 21, 738–743. [Google Scholar] [CrossRef]
- Mäki-Opas, T.E.; Borodulin, K.; Valkeinen, H.; Stenholm, S.; Kunst, A.E.; Abel, T.; Härkänen, T.; Kopperoinen, L.; Itkonen, P.; Prättälä, R. The contribution of travel-related urban zones, cycling and pedestrian networks and green space to commuting physical activity among adults—A cross-sectional population-based study using geographical information systems. BMC Public Health 2016, 16, 760. [Google Scholar] [CrossRef]
- Pucher, J.; Dill, J.; Handy, S. Infrastructure, programs, and policies to increase bicycling: An international review. Prev. Med. 2010, 50, S106–S125. [Google Scholar] [CrossRef]
- Heinen, E.; Van Wee, B.; Maat, K. Commuting by bicycle: An overview of the literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R.; Seinen, M. Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies. Transp. Res. Part A Policy Pract. 2011, 45, 451–475. [Google Scholar] [CrossRef]
- Snizek, B.; Sick Nielsen, T.A.; Skov-Petersen, H. Mapping bicyclists’ experiences in Copenhagen. J. Transp. Geogr. 2013, 30, 227–233. [Google Scholar] [CrossRef]
- Winters, M.; Davidson, G.; Kao, D.; Teschke, K. Motivators and deterrents of bicycling: Comparing influences on decisions to ride. Transportation 2011, 38, 153–168. [Google Scholar] [CrossRef]
- Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 2012, 46, 1730–1740. [Google Scholar] [CrossRef]
- Sener, I.N.; Eluru, N.; Bhat, C.R. An analysis of bicycle route choice preferences in Texas, US. Transportation 2009, 36, 511–539. [Google Scholar] [CrossRef]
- Hoehner, C.M.; Ramirez, L.K.B.; Elliott, M.B.; Handy, S.L.; Brownson, R.C. Perceived and objective environmental measures and physical activity among urban adults. Am. J. Prev. Med. 2005, 28, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Pucher, J. Cycling to work in 90 large American cities: New evidence on the role of bike paths and lanes. Transportation 2012, 39, 409–432. [Google Scholar] [CrossRef]
- Winters, M.; Brauer, M.; Setton, E.M.; Teschke, K. Built environment influences on healthy transportation choices: Bicycling versus driving. J. Urban Health 2010, 87, 969–993. [Google Scholar] [CrossRef] [PubMed]
- Menghini, G.; Carrasco, N.; Schüssler, N.; Axhausen, K.W. Route choice of cyclists in Zurich. Transp. Res. A Policy Pract. 2010, 44, 754–765. [Google Scholar] [CrossRef]
- Winters, M.; Teschke, K. Route preferences among adults in the near market for bicycling: Findings of the cycling in cities study. Am. J. Health Promot. 2010, 25, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Heinen, E.; Maat, K.; van Wee, B. The effect of work-related factors on the bicycle commute mode choice in the Netherlands. Transportation 2013, 40, 23–43. [Google Scholar] [CrossRef]
- Winters, M.; Teschke, K.; Grant, M.; Setton, E.; Brauer, M. How far out of the way will we travel? Built environment influences on route selection for bicycle and car travel. Transp. Res. Rec. 2010, 2190, 1–10. [Google Scholar] [CrossRef]
- O’Connor, J.P.; Brown, T.D. Riding with the sharks: serious leisure cyclist’s perceptions of sharing the road with motorists. J. Sci. Med. Sport 2010, 13, 53–58. [Google Scholar] [CrossRef]
- Cervero, R.; Sarmiento, O.L.; Jacoby, E.; Gomez, L.F.; Neiman, A. Influences of built environments on walking and cycling: Lessons from Bogotá. Int. J. Sustain. Transp. 2009, 3, 203–226. [Google Scholar] [CrossRef]
- Zhao, P. The impact of the built environment on bicycle commuting: Evidence from Beijing. Urban Stud. 2014, 51, 1019–1037. [Google Scholar] [CrossRef]
- Saelens, B.E.; Sallis, J.F.; Frank, L.D. Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Braza, M.; Shoemaker, W.; Seeley, A. Neighborhood design and rates of walking and biking to elementary school in 34 California communities. Am. J. Health Promot. 2004, 19, 128–136. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M. Investigation of travel and activity patterns using location-based social network data: A case study of active mobile social media users. ISPRS Int. J. Geo-Inf. 2015, 4, 1512–1529. [Google Scholar] [CrossRef]
- Steiger, E.; Westerholt, R.; Resch, B.; Zipf, A. Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data. Comput. Environ. Urban Syst. 2015, 54, 255–265. [Google Scholar] [CrossRef]
- Sun, Y.; Mobasheri, A. Utilizing Crowdsourced data for studies of cycling and air pollution exposure: A case study using Strava Data. Int. J. Environ. Res. Public Health 2017, 14, 274. [Google Scholar] [CrossRef]
- Griffin, G.P.; Jiao, J. Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. J. Transp. Health 2015, 2, 238–247. [Google Scholar] [CrossRef]
- See, L.; Mooney, P.; Foody, G.; Bastin, L.; Comber, A.; Estima, J.; Fritz, S.; Kerle, N.; Jiang, B.; Laakso, M.; et al. Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS Int. J. Geo-Inf. 2016, 5, 55. [Google Scholar] [CrossRef]
- Heesch, K.C.; James, B.; Washington, T.L.; Zunig, K.; Burke, M. Evaluation of the Veloway 1: A natural experiment of new bicycle infrastructure in Brisbane, Australia. J. Transp. Health 2016, 3, 366–376. [Google Scholar] [CrossRef]
- Jesticoa, B.; Nelsona, T.; Wintersb, M. Mapping ridership using crowdsourced cycling data. J. Transp. Geogr. 2016, 52, 90–97. [Google Scholar] [CrossRef]
- Herrero, J. Using Big Data to Understand Trail Use: Three Strava Tools. Available online: https://www.trafx.net/insights.htm (accessed on 15 May 2016).
- Selala, M.K.; Musakwa, W. The potential of strava data to contribute in non-motorised transport (Nmt) planning in Johannesburg. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B2, 587–594. [Google Scholar] [CrossRef]
- Riordan, B. Strava Metro: Better Data for Better Cities. Available online: http://ubdc.ac.uk/media/1416/uofg-training.pdf (accessed on 16 October 2016).
- Strava Metro. Strava Metro Comprehensive User Guide Version 2.0. Available online: http://ubdc.ac.uk/media/1323/stravametro_200_user_guide_withoutpics.pdf (accessed on 6 January 2016).
- Urban Big Data Centre, UK. Data services: Strava Metro Data. Available online: http://ubdc.ac.uk/data-services/data-catalogue/transport-data (accessed on 6 January 2016).
- Glasgow City Council. Road Network. Available online: https://data.glasgow.gov.uk/dataset/road-network (accessed on 20 February 2015).
- Strava Metro. Strava Metro Comprehensive User Guide Version 5.01. Available online: http://metro.strava.com/ (accessed on 6 January 2017).
- Scotland’s Census. Scotland’s Census 2011 Data. Available online: https://www.nrscotland.gov.uk (accessed on 6 January 2016).
- National Records of Scotland. Scotland 2011 Output Area Boundaries. Available online: https://www.nrscotland.gov.uk/statistics-and-data/geography/our-products/census-datasets/2011-census/2011-boundaries (accessed on 6 January 2016).
- DATA.GOV.UK. National Public Transport Access Nodes (NaPTAN). Available online: https://data.gov.uk/dataset/naptan (accessed on 20 February 2015).
- European Environment Agency. Urban Atlas. Available online: http://www.eea.europa.eu (accessed on 27 June 2014).
- Greenspace Scotland. Scotland’s Greenspace Map. Available online: http://greenspacescotland.org.uk (accessed on 4 May 2016).
- Department for Transport. Traffic Counts. Available online: http://www.dft.gov.uk/traffic-counts (accessed on 11 February 2016).
- DATA.GOV.UK. Road Safety Data. Available online: https://data.gov.uk/dataset/road-accidents-safety-data (accessed on 29 September 2016).
- Larsen, K.; Gilliland, J.; Hess, P.; Tucker, P.; Irwin, J.; He, M. The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. Am. J. Public Health 2009, 99, 520–526. [Google Scholar] [CrossRef]
Field | Description |
---|---|
Edge_id | Unique and permanent Street ID number for delivery. |
Year | Numerical year format (yyyy). |
Day | Numerical day format (1–365). |
Hour | Numerical hour format (0–24). |
Minute | Numerical minute format (0–59). |
Count_Ride | Count of all-purpose cycling trips (regardless of unique cyclists) on the section of street for the day, hour and minute. |
Commute_Count_Ride | Count of commuting cycling trips (regardless of unique cyclists) on the section of street for the day, hour and minute. |
Recreation_Count _Ride | Count of recreational cycling trips (regardless of unique cyclists) on the section of street for the day, hour and minute. |
Statistics | ||||||||
---|---|---|---|---|---|---|---|---|
Athlete ID count (User count) | 13,684 | |||||||
Activity count (Trip count) | 287,833 | |||||||
Commute count (Commute trip count) | 174,758 | |||||||
Recreational count (Recreational trip count) | 113,075 | |||||||
Average distance of trips | 24 km | |||||||
Average time of trips | 81 min | |||||||
Gender | Under 25 | 25–34 | 35–44 | 45–54 | 55–64 | Over 64 | No Birth Date | Total |
Male | 718 | 2176 | 2957 | 2028 | 448 | 73 | 2812 | 11,212 |
Female | 141 | 417 | 346 | 217 | 44 | 2 | 531 | 1698 |
Variable Type | Indepedent Variables | Type |
---|---|---|
Temporal factor | Time of the day | categorical |
Socio-economic factors | Population density (/ha) | numeric |
Employment density (/ha) | numeric | |
Urban form factors | Distance to city centre (km) | numeric |
Distance to the nearest bus stop (km) | numeric | |
Road factors | Road class | categorical |
Road length (km) | numeric | |
Connectivity of major road | numeric | |
Connectivity of minor road | numeric | |
Land use and green space factors | Land use mix | numeric |
Dominant land use type | categorical | |
Contiguity to green space | categorical | |
Traffic-related factors | Volume of motor vehicles (k) | numeric |
Traffic accident density (/m square) | numeric |
Coefficient | SE | p-Value | |
---|---|---|---|
Intercept | –0.085204 | 0.04942 | 0.0848 |
TOTD “Very Early AM Hours” | 0.143248 | 0.01274 | <0.0001 |
TOTD “Early AM Hours” | 0.015746 | 0.01718 | 0.3595 * |
TOTD “PM Peak Hours” | 0.05746 | 0.01537 | 0.0002 |
TOTD “Early Evening Hours” | 0.090575 | 0.01537 | <0.0001 |
TOTD “Late Evening Hours” | 0.146904 | 0.01437 | <0.0001 |
Population density | −0.000105 | 0.00007 | 0.1459 * |
Employment density | 0.00089 | 0.00049 | 0.0734 * |
Distance to city centre | 0.007584 | 0.00411 | 0.068 * |
Distance to the nearest bus stop | −0.065410 | 0.09992 | 0.5142 * |
Road class “Minor” | −0.05799 | 0.03249 | 0.0772 * |
Road length | −0.058438 | 0.025 | 0.0214 |
Connectivity of major road | 0.027201 | 0.00923 | 0.004 |
Connectivity of minor road | 0.041115 | 0.00964 | <0.0001 |
Land use mix | −0.019881 | 0.02038 | 0.3316 * |
DLUT “Natural” | 0.043976 | 0.04296 | 0.3084 * |
DLUT “Other built-up” | 0.016395 | 0.02872 | 0.5693 * |
DLUT “Residential” | 0.060977 | 0.02482 | 0.0157 |
CTGS “Yes” | 0.021779 | 0.02044 | 0.2891 * |
Volume of motor vehicles | −0.000909 | 0.00035 | 0.0116 |
Traffic accident density | −14.31249 | 42.86109 | 0.7391 * |
AIC | −493.1176 | ||
BIC | −357.0646 | ||
Restricted log-likelihood | 269.5588 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Du, Y.; Wang, Y.; Zhuang, L. Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data. Int. J. Environ. Res. Public Health 2017, 14, 644. https://doi.org/10.3390/ijerph14060644
Sun Y, Du Y, Wang Y, Zhuang L. Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data. International Journal of Environmental Research and Public Health. 2017; 14(6):644. https://doi.org/10.3390/ijerph14060644
Chicago/Turabian StyleSun, Yeran, Yunyan Du, Yu Wang, and Liyuan Zhuang. 2017. "Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data" International Journal of Environmental Research and Public Health 14, no. 6: 644. https://doi.org/10.3390/ijerph14060644
APA StyleSun, Y., Du, Y., Wang, Y., & Zhuang, L. (2017). Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data. International Journal of Environmental Research and Public Health, 14(6), 644. https://doi.org/10.3390/ijerph14060644