Effects of Sulfate, Chloride, and Bicarbonate on Iron Stability in a PVC-U Drinking Pipe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. PVC-U Drinking Pipe Preparation
2.3. Iron Adsorption
2.4. Iron Release
2.5. Data Analysis
3. Results
3.1. Iron Adsorption under Tap Water Condition
3.2. Iron Adsorption under the Single Factor of the Three Anions
3.3. Iron Release under the Single Factor of the Three Anions
3.4. Iron Release under Variability of LI
3.5. Regression Models for Iron Release
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dabrowski, W.; Buchta, R.; Mackie, R.I. Impact of water blending on calcium carbonate equilibriumin water distribution systems. J. Environ. Eng. 2004, 130, 1059–1062. [Google Scholar] [CrossRef]
- Fabbricino, M.; Korshin, G.V. Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release. Water Res. 2014, 62, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Sander, A.; Berghult, B.; Broo, A.E.; Johansson, E.L.; Hedberg, T. Iron corrosion in drinking water distribution systems—The effect of pH, calcium and hydrogen carbonate. Corros. Sci. 1996, 38, 443–455. [Google Scholar] [CrossRef]
- Lou, J.C.; Han, J.Y. Assessing water quality of drinking water distribution system in the South Taiwan. Environ. Monit. Assess. 2007, 134, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.I.; Abozeid, G. Dynamic simulation of pressure head and chlorine concentration in the city of Asyut Water supply network in abnormal operating conditions. Arab. J. Sci. Eng. 2011, 36, 173–184. [Google Scholar] [CrossRef]
- Liu, H.Z.; Schonberger, K.D.; Peng, C.Y.; Ferguson, J.F.; Desormeaux, E.; Meyerhofer, P.; Luckenbach, H.; Korshin, G.V. Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales. Water Res. 2013, 47, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Nierop, K.G.J.; Jansen, B.; Verstraten, J.A. Dissolved organic matter, aluminium and iron interactions: Precipitation induced by metal/carbon ratio, pH and competition. Sci. Total Environ. 2002, 300, 201–211. [Google Scholar] [CrossRef]
- Shi, B.Y.; Xiao, W.Z.; Taylor, J.S. Influences of water treatment process on iron and copper release in distribution system. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2006, 41, 1667–1683. [Google Scholar] [CrossRef] [PubMed]
- Kerr, C.J.; Osborn, K.S.; Roboson, G.D.; Handley, P.S. The relationship between pipe material and biofilm formation in a laboratory model system. J. Appl. Microbiol. 1999, 85, 29S–38S. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Wang, H.B.; Hu, C.; Yang, M.; Hu, H.Y.; Niu, J.F. Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems. Corros. Sci. 2015, 90, 331–339. [Google Scholar] [CrossRef]
- Sarin, P.; Snoeyink, V.L.; Bebee, J.; Jim, K.K.; Beckett, M.A.; Kriven, W.M.; Clement, J.A. Iron release from corroded iron pipes in drinking water distribution systems: Effect of dissolved oxygen. Water Res. 2004, 38, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Gagnon, G.A. Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality. Water Res. 2014, 48, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Kurdi, M.; Ferdows, M.S.; Maghsoudi, A. Sensitivity of Corrosion and Scaling Indices Based on Ions; Case Study Iran. Water Qual. Expos. Health 2015, 7, 363–372. [Google Scholar] [CrossRef]
- Khorsandi, H.; Mohammadi, A.; Karimzadeh, S.; Khorsandi, J. Evaluation of corrosion and scaling potential in rural water distribution network of Urmia, Iran. Desalin. Water Treat. 2016, 57, 10585–10592. [Google Scholar] [CrossRef]
- Knowles, A.D.; Nguyen, C.K.; Edwards, M.A.; Stoddart, A.; McIlwain, B.; Gagnon, G.A. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2015, 50, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shi, B.Y.; Gu, J.N.; Wang, D.S.; Yang, M. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system. Water Res. 2012, 46, 5423–5433. [Google Scholar] [CrossRef] [PubMed]
- Larson, T.E.; Skold, R.V. Corrosion and tuberculation of cast iron. J. Am. Water Works Assoc. 1957, 49, 1294–1302. [Google Scholar]
- Bartram, J.; Brocklehurst, C.; Fisher, M.B.; Luyendijk, F.; Hossain, R.; Wardlaw, T.; Gordon, B. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges. Int. J. Environ. Res. Public Health 2014, 11, 8137–8165. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Xin, K.L. A sustainable plan for China’s drinking water. Nature 2014, 511, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Burn, S.; Davis, P.; Schiller, T. Long Term Performance Prediction for PVC Pipe; AWWA Research Foundation: Denver, CO, USA, 2005. [Google Scholar]
- Wang, J.Y.; Li, S.P.; Xin, K.L.; Tao, T. Equilibrium and kinetic modeling of iron adsorption and the effect by chloride, sulfate, and hydroxyl: Evaluation of PVC-U drinking pipes. Environ. Sci. Pollut. Res. 2016, 23, 23902–23910. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Ellaway, M.; Adrien, R. Study of corrosion material accumulated on the inner wall of steel water pipe. Corros. Sci. 2001, 43, 2065–2081. [Google Scholar] [CrossRef]
- Nicomel, N.R.; Leus, K.; Folens, K.; Van, D.V.P.; Du, L.G. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. Int. J. Environ. Res. Public Health 2016, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Sofia, G.H.; Lourdes, R.V. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption. Int. J. Environ. Res. Public Health 2016, 13, 69. [Google Scholar] [CrossRef]
- Xie, Y.J.; Giammar, D.E. Effects of flow and water chemistry on lead release rates from pipe scales. Water Res. 2011, 45, 6525–6534. [Google Scholar] [CrossRef] [PubMed]
- Martendal, E.; Budziak, D.; Carasek, E. Application of fractional factorial experimental and Box-Behnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples. J. Chromatogr. A 2007, 1148, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kockal, N.U.; Ozturan, T. Optimization of properties of fly ash aggregates for high-strength lightweight concrete production. Mater. Des. 2011, 32, 3586–3593. [Google Scholar] [CrossRef]
- Vlyssides, A.; Moutsatsou, A.; Mai, S.; Barampouti, E.M. Effect of oxidation pretreatment by hydrogen peroxide on iron removal from wastewater of a sulfuric acid iron-pickling process. Environ. Prog. 2005, 24, 82–87. [Google Scholar] [CrossRef]
- Yang, F.; Shi, B.; Bai, Y.; Sun, H.; Lytle, D.A.; Wang, D. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes. Water Res. 2014, 59, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Choi, B.G.; Hong, S. Effects of NF treated water on corrosion of pipe distribution system and its implications to blending with conventionally treated water. Desalination 2015, 360, 138–145. [Google Scholar] [CrossRef]
- Gerke, T.L.; Maynard, J.B.; Schock, M.R.; Lytle, D.L. Physiochemical characterization of five iron tubercles from a single drinking water distribution system: Possible new insights on their formation and growth. Corros. Sci. 2008, 50, 2030–2039. [Google Scholar] [CrossRef]
- Peng, C.Y.; Ferguson, J.F.; Korshin, G.V. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron. Water Res. 2013, 47, 5257–5269. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.A.; Dietz, J.D.; Mutoti, G.; Taylor, J.S.; ASCE, M.; Randall, A.A. Modified Larsons Ratio Incorporating Temperature, Water Age, and Electroneutrality Effects on Red Water Release. J. Environ. Eng. 2005, 131, 1514–1520. [Google Scholar] [CrossRef]
- Taylor, R.M. Influence of chloride on the formation of iron-oxides from Fe (II) chloride. 2. effect of [Cl] on the formation of lepidocrccite and its crystalinity. Clays Clay Miner. 1984, 32, 175–180. [Google Scholar] [CrossRef]
- Zhang, Z.; Stout, J.E.; Yu, V.L.; Vidic, R. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems. Water Res. 2008, 42, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sasidhar, P.; Kumar, S.B.V. Assessment of groundwater corrosiveness for unconfined aquifer system at Kalpakkam. Environ. Monit. Assess. 2008, 145, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Rygaard, M.; Arvin, E.; Binning, P.J. The valuation of water quality: Effects of mixing different drinking water qualities. Water Res. 2009, 43, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
Run Order | Variables (Water Chemistry) | |||
---|---|---|---|---|
SO42− (mg/L) | Cl− (mg/L) | HCO3− (mg/L) | LI | |
1 | 250 | 125 | 0 | / |
2 | 125 | 125 | 225 | 1.67 |
3 | 0 | 250 | 225 | 1.11 |
4 | 125 | 125 | 225 | 1.67 |
5 | 125 | 250 | 450 | 1.11 |
6 | 125 | 125 | 225 | 1.67 |
7 | 125 | 250 | 0 | / |
8 | 0 | 0 | 225 | 0 |
9 | 125 | 0 | 0 | / |
10 | 125 | 0 | 450 | 0.56 |
11 | 250 | 0 | 225 | 2.22 |
12 | 125 | 125 | 225 | 1.67 |
13 | 125 | 125 | 225 | 1.67 |
14 | 250 | 125 | 450 | 1.38 |
15 | 250 | 250 | 225 | 3.33 |
16 | 0 | 125 | 450 | 0.27 |
17 | 0 | 125 | 0 | / |
Source | p-Value | F Value | Adjusted R-Squared |
---|---|---|---|
Linear | 0.0002 | 15.00 | 0.7241 |
2FI | 0.7167 | 0.46 | 0.6848 |
Quadratic | 0.8681 | 0.24 | 0.5911 |
Source | Sum of Squares | Mean Square | F Value | p-Value | Remark |
---|---|---|---|---|---|
Model | 56,249.25 | 18,749.75 | 15.00 | 0.0002 | significant |
X1 | 14,706.13 | 14,706.13 | 11.76 | 0.0045 | significant |
X2 | 39,621.13 | 39,621.13 | 31.69 | <0.0001 | significant |
X3 | 1922.00 | 1922.00 | 1.54 | 0.2370 | not significant |
Residual | 16,254.63 | 1250.36 | |||
Lack of Fit | 13,889.43 | 1543.27 | 2.61 | 0.1845 | not significant |
Pure Error | 2365.20 | 591.30 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tao, T.; Yan, H. Effects of Sulfate, Chloride, and Bicarbonate on Iron Stability in a PVC-U Drinking Pipe. Int. J. Environ. Res. Public Health 2017, 14, 660. https://doi.org/10.3390/ijerph14060660
Wang J, Tao T, Yan H. Effects of Sulfate, Chloride, and Bicarbonate on Iron Stability in a PVC-U Drinking Pipe. International Journal of Environmental Research and Public Health. 2017; 14(6):660. https://doi.org/10.3390/ijerph14060660
Chicago/Turabian StyleWang, Jiaying, Tao Tao, and Hexiang Yan. 2017. "Effects of Sulfate, Chloride, and Bicarbonate on Iron Stability in a PVC-U Drinking Pipe" International Journal of Environmental Research and Public Health 14, no. 6: 660. https://doi.org/10.3390/ijerph14060660
APA StyleWang, J., Tao, T., & Yan, H. (2017). Effects of Sulfate, Chloride, and Bicarbonate on Iron Stability in a PVC-U Drinking Pipe. International Journal of Environmental Research and Public Health, 14(6), 660. https://doi.org/10.3390/ijerph14060660