Assessing Lead, Nickel, and Zinc Pollution in Topsoil from a Historic Shooting Range Rehabilitated into a Public Urban Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Sampling
2.3. Analytical Procedures
2.3.1. XRF Procedure
2.3.2. ICP-MS Procedure
2.3.3. Hybrid Methodology
2.4. Reagents and Instrumentation
2.5. Pollution Indicators
2.6. Human Health Risk Assessment
2.7. Statistical and Spatial Analysis
3. Results and Discussion
3.1. Heavy Metal Concentrations
3.2. Pollution Indicators
3.3. Health Risk Assessment
3.4. Land Use and Its Effects on Human Health Risk Assessment
3.5. Spatial Representation of Risk for Pb
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kumar, K.; Hundal, L.S. Soil in the city: Sustainably improving urban soils. J. Environ. Qual. 2016, 45, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Okkenhaug, G.; Grasshorn Gebhardt, K.-A.; Amstaetter, K.; Lassen Bue, H.; Herzel, H.; Mariussen, E.; Rossebø Almås, Å.; Cornelissen, G.; Breedveld, G.D.; Rasmussen, G.; et al. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J. Hazard. Mater. 2016, 307, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Strømseng, A.E.; Ljønes, M.; Bakka, L.; Mariussen, E. Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range. J. Environ. Monit. 2009, 11, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2003; ISBN 978-0-387-21510-5. [Google Scholar]
- Alloway, B.J. (Ed.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4470-7. [Google Scholar]
- Ackermann, S.; Gieré, R.; Newville, M.; Majzlan, J. Antimony sinks in the weathering crust of bullets from Swiss shooting ranges. Sci. Total Environ. 2009, 407, 1669–1682. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Guidance for Data Useability in Risk Assessment (Part A); USEPA: Washington, DC, USA, 1991; USEPA Publication No. EPA/540/R-92/003. Available online: https://rais.ornl.gov/documents/USERISKA.pdf (accessed on 15 August 2015).
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual; USEPA: Washington, DC, USA, 1989; USEPA Publication No. EPA/540/1-89/002. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf (accessed on 15 August 2015).
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Mariussen, E.; Johnsen, I.V.; Strømseng, A.E. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environ. Sci. Pollut. Res. Int. 2017, 24, 10182–10196. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-S.; Ding, J.; Xu, B.; Wang, Y.-J.; Li, H.-B.; Yu, S. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Antimony Compunds. Available online: https://www3.epa.gov/airtoxics/hlthef/antimony.html (accessed on 30 October 2016).
- Agency for Toxic Substances & Disease Registry (ATSDR). Toxic Substance Portal. Available online: http://www.atsdr.cdc.gov/substances/index.asp (accessed on 1 September 2016).
- Mejía-Piña, K.G.; Huerta-Diaz, M.A.; González-Yajimovich, O. Calibration of handheld X-ray fluorescence (XRF) equipment for optimum determination of elemental concentrations in sediment samples. Talanta 2016, 161, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, N.Y. Natural attenuation of contaminated soils. Environ. Int. 2004, 30, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Burlakovs, J.; Kaczala, F.; Orupõld, K.; Bhatnagar, A.; Vincevica-Gaile, Z.; Rudovica, V.; Kriipsalu, M.; Hogland, M.; Stapkevica, M.; Hogland, W.; et al. Field-portable X-ray fluorescence spectrometry as rapid measurement tool for landfill mining operations: Comparison of field data vs. laboratory analysis. Int. J. Environ. Anal. Chem. 2015, 95, 609–617. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Cachada, A.; Gavina, A.; Duarte, A.C.; Vega, F.A.; Andrade, M.L.; Pereira, R. Lead and PAHs contamination of an old shooting range: A case study with a holistic approach. Sci. Total Environ. 2017, 575, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Argyraki, A.; Kelepertzis, E. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Sci. Total Environ. 2014, 482–483, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Carlton, C. Derivation Methods of Soils Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonisation; European Commission, Joint Research Centre: Ispra, Italy, 2007; ISBN 978-92-79-05238-5. [Google Scholar]
- Cicchella, D.; De Vivo, B.; Lima, A.; Albanese, S.; McGill, R.A.R.; Parrish, R.R. Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy. Geochem. Explor. Environ. Anal. 2008, 8, 103–112. [Google Scholar] [CrossRef]
- Peinado, F.M.; Ruano, S.M.; González, M.G.B.; Molina, C.E. A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma 2010, 159, 76–82. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Clark, J.J.; Knudsen, A.C. Extent, Characterization, and Sources of Soil Lead Contamination in Small-Urban Residential Neighborhoods. J. Environ. Qual. 2013, 42, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Ajmone-Marsan, F.; Biasioli, M. Trace Elements in Soils of Urban Areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Paulette, L.; Man, T. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environ. Pollut. 2013, 182, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Chapter One—Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. Adv. Agron. 2014, 128, 1–45. [Google Scholar] [CrossRef]
- Paulette, L.; Man, T.; Weindorf, D.C.; Person, T. Rapid assessment of soil and contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, Romania. Geoderma 2015, 243–244, 130–140. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Li, G.; Bi, X.; Zhu, J.; Qin, H.; Dai, Z.; Liu, J.; Li, Q.; Sun, G. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environ. Pollut. 2013, 182, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Van, T.; Ozaki, A.; Nguyen Tho, H.; Nguyen Duc, A.; Tran Thi, Y.; Kurosawa, K. Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Bourliva, A.; Christophoridis, C.; Papadopoulou, L.; Giouri, K.; Papadopoulos, A.; Mitsika, E.; Fytianos, K. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ. Geochem. Health 2017, 39, 611–634. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacón, E.; Ordoñez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Chen, L. Assessment of heavy metal pollution in topsoil around Beijing metropolis. PLoS ONE 2016, 11, e0155350. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, A.; Filipsson, M.; Öberg, T.; Bergbäck, B. Climate change—An uncertainty factor in risk analysis of contaminated land. Sci. Total Environ. 2011, 409, 4693–4700. [Google Scholar] [CrossRef] [PubMed]
- Sorvari, J. Environmental risks at Finnish shooting ranges—A case study. Hum. Ecol. Risk Assess. 2007, 13, 1111–1146. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Lago-Vila, M.; Arenas-Lago, D.; Andrade, M.L.; Vega, F.A. Pollution and risk assessment of potential hazardous elements in a shooting range soils (NW Spain) Contaminación y evaluación de riesgo de. Span. J. Soil Sci. 2016, 6, 107–122. [Google Scholar] [CrossRef]
- Peddicord, R.K.; LaKind, J.S. Ecological and human health risks at an outdoor firing range. Environ. Toxicol. Chem. 2000, 19, 2602–2613. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Saha, U.K. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut. 2016, 216, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Mathee, A.; de Jager, P.; Naidoo, S.; Naicker, N. Exposure to lead in South African shooting ranges. Environ. Res. 2017, 153, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Argyraki, A.; Petrakaki, N. Heterogeneity in heavy metal concentrations in the soil of a firing range area at Kesariani, Athens, Greece. In Proceedings of the 12th International Congress of the Geological Society of Greece, Planet Earth: Geological Processes & Sustainable Development, Patras, Greece, 19–22 May 2010; Bulletin of the Geological Society of Greece: Patras, Greece, 2010; Volume XLIII. [Google Scholar]
- Petrakaki, N. Lead Distribution in Firing Ranges: The Case of Skopeftirio Park in Athens. Master’s Thesis, University of Athens, Athens, Greece, 2009. [Google Scholar]
- Environment Protection Authority Victoria (EPA Victoria). Soil Sampling. In Industrial Waste Resource Guidelines; USEPA: Washitong, DC, USA, 2016. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Representative Sampling Guidance, Volume 1: Soil; USEPA: Washington, DC, USA, 1995.
- United States Environmental Protection Agency (USEPA). Soil Contamination. Available online: http://www.epa.gov/superfund/students/wastsite/soilspil.htm (accessed on 1 April 2016).
- United States Environmental Protection Agency (USEPA). Method 6200. Available online: http://www.epa.gov/SW-846/pdfs/6200.pdf (accessed on 1 April 2016).
- Canadian Council of Ministers of the Environment (CCME). Guidance Manual on Sampling, Analysis, and Data Managemenent for Contaminated Sites; CCME: Winnipeg, MB, USA, 1993; ISBN 0-919074-21-9.
- Suh, J.; Lee, H.; Choi, Y. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS. Int. J. Environ. Res. Public Health 2016, 13, 1191. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Jiang, F.; Li, X.; Mu, S. Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ. Monit. Assess. 2010, 160, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. Geochem. J. 1969, 2, 108–118. [Google Scholar]
- Yuen, J.Q.; Olin, P.H.; Lim, H.S.; Benner, S.G.; Sutherland, R.A.; Ziegler, A.D. Accumulation of potentially toxic elements in road deposited sediments in residential and light industrial neighborhoods of Singapore. J. Environ. Manag. 2012, 101, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–46. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; USEPA: Washington, DC, USA, 2002.
- Ofungwu, J. Statistical Applications for Environmental Analysis and Risk Assessment; Statistics in Practice; Wiley: Hoboken, NJ, USA, 2014; ISBN 978-1-118-63453-0. [Google Scholar]
- Joseph, A.J. Health, Safety, and Environmental Data Analysis: A Business Approach; Lewis: Boca Raton, FL, USA, 1997; ISBN 978-1566702331. [Google Scholar]
- Sun, G.; Li, Z.; Liu, T.; Chen, J.; Wu, T.; Feng, X. Metal Exposure and Associated Health Risk to Human Beings by Street Dust in a Heavily Industrialized City of Hunan Province, Central China. Int. J. Environ. Res. Public Health 2017, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Guney, M.; Zagury, G.J.; Dogan, N.; Onay, T.T. Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J. Hazard. Mater. 2010, 182, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.P.; Patinha, C.; Wragg, J.; Dias, A.C.; Cave, M.; Sousa, A.J.; Batista, M.J.; Prazeres, C.; Costa, C.; da Silva, E.F.; et al. Urban geochemistry of lead in gardens, playgrounds and schoolyards of Lisbon, Portugal: Assessing exposure and risk to human health. Appl. Geochem. 2014, 44, 45–53. [Google Scholar] [CrossRef]
- Mugoša, B.; Djurović, D.; Pirnat, A.; Bulat, Z.; Barjaktarović-Labović, S. Children’s health risk assessment based on the content of toxic metals Pb, Cd, Cu and Zn in urban soil samples of Podgorica, Montenegro. Vojnosanit. Pregl. 2015, 72, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.R.; Kaufman, C.A.; Koch, I.; Sova, J.; Reimer, K.J. Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Sci. Total Environ. 2007, 374, 91–101. [Google Scholar] [CrossRef] [PubMed]
Category of Enrichment | EF | Category of Pollution | Igeo |
---|---|---|---|
Minimal | <2 | Unpolluted | <0 |
Moderate | 2–5 | Unpolluted to moderate | 0–1 |
Significant | 5–20 | Moderate | 1–2 |
Very high | 20–40 | Moderate to heavy | 2–3 |
Extremely high | >40 | Heavy | 3–4 |
Heavy to extreme | 4–5 | ||
Extreme | >5 |
Parameter | Name | Units | Value |
---|---|---|---|
Cexp | Concentration of the trace element | mg/kg | Element dependent |
Ring | Ingestion rate | mg/day | 200 for children, 100 for adults |
EF | Exposure frequency | days/year | 40 for recreational |
ED | Exposure duration | years | 6 for children, 24 for adults |
BW | Body weight | kg | 15 for children, 70 for adults |
AT | Averaging time | days | ED × 365 |
Rinh | Inhalation rate | m3/day | 7.5 for children, 20 for adults |
PEF | Particle emission factor | m3/kg | 1.36 × 109 |
SA | Exposed skin area | cm2/day | 2800 for children, 5700 for adults |
SAF | Skin adherence factor | mg/cm2 | 0.2 for children, 0.07 for adults |
ABS | Dermal absorption factor | 0.001 for non-carcinogenic, 0.01 for carcinogenic |
Parameters (mg/kg/day) | Pb | Zn | Ni | |
---|---|---|---|---|
RfD | Ingestion | 3.50 × 10−3 | 3.00 × 10−1 | 2.00 × 10−2 |
Inhalation | 9.00 × 10−5 | |||
Dermal contact | 5.25 × 10−4 | 6.00 × 10−2 | 5.40 × 10−3 | |
SF | 8.50 × 10−3 | 8.40 × 10−1 |
Element | Reference Concentration | EF | Igeo | ||||||
---|---|---|---|---|---|---|---|---|---|
(mg/kg) [18] | Min | Max | Mean | Category | Min | Max | Mean | Category | |
ICP-MS (n = 13) | |||||||||
Pb | 60 | 0.59 | 639 | 89 | extr. high | −1.30 | 8.78 | 5.95 | extreme poll |
Ni | 95 | 0.56 | 1.26 | 0.92 | minimal | −1.36 | −0.20 | −0.65 | unpolluted |
Zn | 104 | 0.48 | 1.41 | 0.65 | minimal | −1.58 | −0.04 | −1.15 | unpolluted |
XRF (n = 91) | |||||||||
Pb | 60 | 0.20 | 400 | 32 | very high | −2.85 | 8.11 | 4.50 | heavy/extreme |
Ni | 95 | 0.57 | 2.66 | 1.42 | minimal | −1.34 | 0.87 | −0.03 | unpolluted |
Zn | 104 | 0.46 | 6.66 | 0.80 | minimal | −1.67 | 2.20 | −0.85 | unpolluted |
HYBRID (n = 91) | |||||||||
Pb | 60 | 0.71 | 1402 | 115 | extr. high | −1.04 | 9.92 | 6.31 | extreme poll |
Ni | 95 | 0.38 | 1.76 | 0.94 | minimal | −1.94 | 0.28 | −0.63 | unpolluted |
Zn | 104 | 0.39 | 5.77 | 0.70 | minimal | −1.88 | 1.99 | −1.06 | unpolluted |
Element | C 95%UCL | Adults | Children | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HQ | CR | HQ | CR | ||||||||
Ing | Inh | Derm | Total (∑) | Ing | Inh | Derm | Total (∑) | ||||
ICP | |||||||||||
Pb | 63,650.80 | 2.85 | 8.37 × 10−4 | 7.57 × 10−2 | 2.92 | 2.90 × 10−5 | 2.66 × 10−1 | 1.48 × 10−3 | 4.96 × 10−1 | 27.1 | 6.78 × 10−5 |
Ni | 102.44 | 8.02 × 10−4 | 2.36 × 10−7 | 1.19 × 10−5 | 8.14 × 10−4 | 1.36 × 10−9 | 7.48 × 10−3 | 4.18 × 10−7 | 7.76 × 10−5 | 7.56 × 10−3 | 6.02 × 10−10 |
Zn | 82.25 | 4.29 × 10−5 | 1.26 × 10−8 | 8.56 × 10−7 | 4.38 × 10−5 | 4.01 × 10−4 | 2.24 × 10−8 | 5.61 × 10−6 | 4.06 × 10−4 | ||
XRF | |||||||||||
Pb | 7,152.74 | 0.32 | 9.41 × 10−5 | 8.51 × 10−3 | 33.0 × 10−2 | 3.26 × 10-6 | 2.99 | 1.67 × 10−4 | 5.57 × 10−2 | 3.04 | 7.61 × 10−6 |
Ni | 146.95 | 1.15 × 10−3 | 3.38 × 10−7 | 1.70 × 10−5 | 1.17 × 10−3 | 1.95 × 10-9 | 1.07 × 10−2 | 6.00 × 10−7 | 1.11 × 10−4 | 1.08 × 10−2 | 8.64 × 10−10 |
Zn | 89.34 | 4.66 ×10−5 | 1.37 × 10−8 | 9.30 × 10−7 | 4.76 × 10−5 | 4.35 × 10−4 | 2.43 × 10−8 | 6.09 × 10−6 | 4.41 × 10−4 | ||
HYBRID | |||||||||||
Pb | 25,067.49 | 1.12 | 3.30 × 10−4 | 2.98 × 10−2 | 1.15 | 1.14 × 10−5 | 10.5 | 5.85 × 10−4 | 1.95 × 10−1 | 10.7 | 2.67 × 10−5 |
Ni | 97.28 | 7.61 ×10−4 | 2.24 × 10−7 | 1.13 × 10−5 | 7.73 × 10−4 | 1.29 × 10−9 | 7.11 × 10−3 | 3.97 × 10−7 | 7.37 × 10−5 | 7.18 × 10−3 | 5.72 × 10−10 |
Zn | 77.32 | 4.03 × 10−5 | 1.19 × 10−8 | 8.05 × 10−7 | 4.12 × 10−5 | 3.77 × 10−4 | 2.10 × 10−8 | 5.27 × 10−6 | 3.82 × 10−4 |
City | Type of | Exposure | Pb | Ni | Zn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study Area | Frequency (EF) | HQ | CR | HQ | CR | HQ | ||||||
Used in Days/Year | Adults | Children | Adults | Children | Adults | Children | Adults | Children | Adults | Children | ||
Kesariani, Greece | Former shooting | 40 | 1.15 | 10.7 | 1.14 × 10−5 | 2.67 × 10−5 | 7.73 × 10−4 | 7.18 × 10−3 | 1.29 × 10−9 | 5.72 × 10−10 | 4.12 × 10−5 | 3.82 × 10−4 |
(this study) | range/park | 180 * | 5.18 | 48.0 | 5.15 × 10−5 | 1.20 × 10−4 | 3.48 × 10−3 | 3.23 × 10−2 | 5.81 × 10−9 | 2.57 × 10−9 | 1.85 × 10−4 | 1.72 × 10−3 |
Thessaloniki, Greece [32] | Urban street dust from commercial city | 180 | 6.12 × 10−2 | 4.60 × 10−1 | 4.35 × 10−3 | 3.58 × 10−2 | 6.43 × 10−9 | 2.85 × 10−9 | 1.54 × 10−2 | 1.21 × 10−2 | ||
Zhuzhou, China [58] | Urban street dust from industrial city | 180 | 4.36 × 10−1 | 3.17 | 1.99 × 10−3 | 1.45 × 10−2 | 4.90 × 10−9 | 6.76 × 10−9 | 1.12 × 10−2 | 8.09 × 10−2 | ||
Luanda, Angola [33] | Urban street dust from industrial city | 180 | 7.23 × 10−1 | 3.55 × 10−3 | 4.61 × 10−10 | 7.40 × 10−3 | ||||||
Madrid, Spain [34] | Surface soil from playgrounds/park | 27 | 3.11 × 10−2 | 9.61 × 10−4 | 1.37 × 10−9 | 7.10× 10−4 | ||||||
Istanbul, Turkey [59] | Surface soil from playgrounds/park | 50–180 | <1.00 | <1.00 | <1.00 | <1.00 | <5.0 × 10−3 | <1.0 × 10−3 | ||||
Lisbon, Portugal [60] | Surface soil from playgrounds | 19–33 | 1.80 | |||||||||
Podgorica, Montenegro [61] | Surface soil from playgrounds | 360 | 2.50 × 10−1 | |||||||||
Xiamen, China [11] | Surface soil from urban parks | 75 | 1.23 × 10−1 | 4.66 × 10−7 | 5.00× 10−3 | 6.45 × 10−10 | 4.00 × 10−3 | |||||
Ontario, Canada [62] | Firing range | nr | 1.84–4.10 | |||||||||
Finland [37] | Firing range | 30–90 | 0.90–1.20 | |||||||||
New York, USA [39] | Firing range | nr | <1.00 | 1.00 × 10−11–2.00 × 10−5 | <1.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urrutia-Goyes, R.; Argyraki, A.; Ornelas-Soto, N. Assessing Lead, Nickel, and Zinc Pollution in Topsoil from a Historic Shooting Range Rehabilitated into a Public Urban Park. Int. J. Environ. Res. Public Health 2017, 14, 698. https://doi.org/10.3390/ijerph14070698
Urrutia-Goyes R, Argyraki A, Ornelas-Soto N. Assessing Lead, Nickel, and Zinc Pollution in Topsoil from a Historic Shooting Range Rehabilitated into a Public Urban Park. International Journal of Environmental Research and Public Health. 2017; 14(7):698. https://doi.org/10.3390/ijerph14070698
Chicago/Turabian StyleUrrutia-Goyes, Ricardo, Ariadne Argyraki, and Nancy Ornelas-Soto. 2017. "Assessing Lead, Nickel, and Zinc Pollution in Topsoil from a Historic Shooting Range Rehabilitated into a Public Urban Park" International Journal of Environmental Research and Public Health 14, no. 7: 698. https://doi.org/10.3390/ijerph14070698
APA StyleUrrutia-Goyes, R., Argyraki, A., & Ornelas-Soto, N. (2017). Assessing Lead, Nickel, and Zinc Pollution in Topsoil from a Historic Shooting Range Rehabilitated into a Public Urban Park. International Journal of Environmental Research and Public Health, 14(7), 698. https://doi.org/10.3390/ijerph14070698