Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health
Abstract
:1. Introduction
2. Materials and Methods
- Conditional inference random forest was used to develop summer and winter NO2 models based on the NO2. These observationally-based summer and winter LURF models of NO2 were evaluated using both statistical measures as well as by comparison with LUR models, developed utilizing the same LULC variables.
- A high spatial resolution, annual average NO2 model (required to estimate health impact using BenMAP) was developed by applying the summer and winter LURF models to a grid of points 200 m apart covering the study area, then averaging the summer and winter NO2 predictions at each grid point.
- Next, the NO2 associated with each individual land use category was estimated by applying the summer and winter LURF models to modified LULC variables, with the summer and winter NO2 values being averaged to estimate annual average NO2 for the 200 m grid. Further, BenMAP [56], the health benefits assessment tool from the US EPA, was used to assess the respiratory impact of each LULC category. The health impact is assessed as the change in incidence in health outcomes arising from the change in NO2 between the NO2 in step 2 and in step 3.
- Finally, after we had identified the LULC categories that have the greatest impact on ambient NO2 (from step 3) and identified ones that are amenable to change, a sensitivity analysis was undertaken in which these LULC categories were modified in the LURF model, and the change in NO2 and the consequent respiratory health impact arising from each modification estimated.
2.1. Developing the LURF Models
2.1.1. Extracting Land Use Variables
2.1.2. Developing the LURF Model
Random Forest
Developing the LURF and LUR Models
2.2. Assessing the Performance of the LURF Model
2.3. Association of Current LULC, Ambient NO2, and Respiratory Health
2.4. Evaluating the Mitigation Potential of LULC Modifications
3. Results
3.1. Assessing the Performance of the LURF Models
3.2. Association of Current LULC, Ambient NO2, and Respiratory Health
3.3. Evaluating the Mitigation Potential of LULC Modifications
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Air Pollution Rising in Many of the World’s Poorest Cities. Available online: http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en/ (accessed on 14 June 2016).
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Ozkaynak, H.; Baxter, L.K.; Dionisio, K.L.; Burke, J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.J.; de Hoogh, C.; Gulliver, J.; Wills, J.; Elliott, P.; Kingham, S.; Smallbone, K. A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Sci. Total Environ. 2000, 253, 151–167. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Goldberg, M.S.; Beckerman, B.; Brook, J.R.; Jerrett, M. Assessing spatial variability of ambient nitrogen dioxide in Montréal, Canada, with a land-use regression model. J. Air Waste Manag. Assoc. 2005, 55, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.H.; LeMasters, G.K. A Review of Land-use Regression Models for Characterizing Intraurban Air Pollution Exposure. Inhal. Toxicol. 2007, 19, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Lemke, L.D.; Xu, X.; Molaroni, S.M.; You, H.; Wheeler, A.J.; Booza, J.; Grgicak-Mannion, A.; Krajenta, R.; Graniero, P. Intra-urban correlation and spatial variability of air toxics across an international airshed in Detroit, Michigan (USA) and Windsor, Ontario (Canada). Atmos. Environ. 2010, 44, 1162–1174. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Pebesma, E.; Vienneau, D.; de Hoogh, K.; Briggs, D.J. Mapping of background air pollution at a fine spatial scale across the European Union. Sci. Total Environ. 2009, 407, 1852–1867. [Google Scholar] [CrossRef] [PubMed]
- Laurent, O.; Hu, J.; Li, L.; Cockburn, M.; Escobedo, L.; Kleeman, M.J.; Wu, J. Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001–2008. Environ. Res. 2014, 134, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Borrego, C.; Amorim, J.H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S.R.; et al. Urban scale air quality modelling using detailed traffic emissions estimates. Atmos. Environ. 2016, 131, 341–351. [Google Scholar] [CrossRef]
- Lobdell, D.T.; Isakov, V.; Baxter, L.; Touma, J.S.; Smuts, M.B.; Özkaynak, H. Feasibility of assessing public health impacts of air pollution reduction programs on a local scale: New Haven case study. Environ. Health Perspect. 2011, 119, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.I.; Spengler, J.D.; Hlinka, D.; Sullivan, D.; Moon, D. Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: Model sensitivity and implications. Atmos. Environ. 2002, 36, 1063–1075. [Google Scholar] [CrossRef]
- Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res. Atmos. 2012, 117, 1–15. [Google Scholar] [CrossRef]
- Joe, D.K.; Zhang, H.; DeNero, S.P.; Lee, H.-H.; Chen, S.-H.; McDonald, B.C.; Harley, R.A.; Kleeman, M.J. Implementation of a high-resolution Source-Oriented WRF/Chem model at the Port of Oakland. Atmos. Environ. 2014, 82, 351–363. [Google Scholar] [CrossRef]
- Sanchez, E.Y.; Lerner, J.C.; Porta, A.; Jacovkis, P.M. Accidental release of chlorine in Chicago: Coupling of an exposure model with a Computational Fluid Dynamics model. Atmos. Environ. 2013, 64, 47–55. [Google Scholar] [CrossRef]
- Reyes, J.M.; Serre, M.L. An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources. Environ. Sci. Technol. 2014, 48, 1736–1744. [Google Scholar] [CrossRef] [PubMed]
- Fernando, H.J.S.; Mammarella, M.C.; Grandoni, G.; Fedele, P.; Di Marco, R.; Dimitrova, R.; Hyde, P. Forecasting PM10 in metropolitan areas: Efficacy of neural networks. Environ. Pollut. 2012, 163, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef] [PubMed]
- Champendal, A.; Kanevski, M.; Huguenot, P.-E. Air pollution mapping using nonlinear land use regression models. In Computational Science and Its Applications—ICCSA 2014, Part III, Proceedings of the 14th International Conference on Computational Science and Its Applications, Guimaraes, Portugal, 30 June–3 July 2014; Springer: Cham, Switzerland, 2014; Volume 8583, pp. 682–690. [Google Scholar]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities—air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- School Facilities Planning Division: California Department of Education. School Site Selection and Approval Guide. Available online: http://www.cde.ca.gov/ls/fa/sf/schoolsiteguide.asp (accessed on 16 November 2015).
- Bureau of Planning and Sustainability. 2015 Climate Action Plan: The City of Portland Oregon. Available online: https://www.portlandoregon.gov/bps/66993 (accessed on 1 December 2015).
- City of Burlington Vermont Burlington VT. Climate Action Plan. Available online: https://www.burlingtonvt.gov/Sustainability/CAP (accessed on 1 December 2015).
- Seattle Office of Sustainability and Environment. Seattle Climate Action Plan. Available online: http://www.seattle.gov/Documents/Departments/OSE/2013_CAP_20130612.pdf (accessed on 1 December 2015).
- Rao, M.; George, L.A.; Rosenstiel, T.N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ. Pollut. 2014, 194, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Borrego, C.; Martins, H.; Tchepel, O.; Salmim, L.; Monteiro, A.; Miranda, A.I. How urban structure can affect city sustainability from an air quality perspective. Environ. Model. Softw. 2006, 21, 461–467. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Morani, A.; Nowak, D.J.; Hirabayashi, S.; Calfapietra, C. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative. Environ. Pollut. 2011, 159, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Cabaraban, M.T.I.; Kroll, C.N.; Hirabayashi, S.; Nowak, D.J. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system. Environ. Pollut. 2013, 176, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Brioude, J.; Angevine, W.M.; Ahmadov, R.; Kim, S.W.; Evan, S.; McKeen, S.A.; Hsie, E.Y.; Frost, G.J.; Neuman, J.A.; Pollack, I.B.; et al. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NOx and CO2 and their impacts. Atmos. Chem. Phys. 2013, 13, 3661–3677. [Google Scholar] [CrossRef]
- Streets, D.G.; Canty, T.; Carmichael, G.R.; De Foy, B.; Dickerson, R.R.; Duncan, B.N.; Edwards, D.P.; Haynes, J.A.; Henze, D.K.; Houyoux, M.R.; et al. Emissions estimation from satellite retrievals: A review of current capability. Atmos. Environ. 2013, 77, 1011–1042. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Mavko, M.E.; Tang, B.; George, L.A. A sub-neighborhood scale land use regression model for predicting NO2. Sci. Total Environ. 2008, 398, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Kashima, S.; Yorifuji, T.; Tsuda, T.; Doi, H. Application of land use regression to regulatory air quality data in Japan. Sci. Total Environ. 2009, 407, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- Brauer, M.; Amann, M.; Burnett, R.T.; Cohen, A.; Dentener, F.; Ezzati, M.; Henderson, S.B.; Krzyzanowski, M.; Martin, R.V.; Van Dingenen, R.; et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 2012, 46, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. 2012, 32, 81–95. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA). AirNow. Available online: http://www.airnow.gov/ (accessed on 1 December 2015).
- MarcoPolo-Panda. Air Quality Forecast. Available online: http://www.marcopolo-panda.eu/forecast/ (accessed on 1 December 2015).
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Casella, G., Fienberg, S., Olkin, I., Eds.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gray, K.R.; Aljabar, P.; Hammers, R.A.; Hammers, A.; Rueckert, D.; Alzheimer’s Disease Neuroimaging Initiative. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 2013, 65, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Wu, H.; Wang, W.; Ma, W.; Sun, X.; Lu, Z. MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 2007, 35, W339–W344. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-W.; Liu, M. Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 2005, 21, 4394–4400. [Google Scholar] [CrossRef] [PubMed]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Brokamp, C.; Jandarov, R.; Rao, M.B.; LeMasters, G.; Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef]
- Hunter, K. Aclima, Google, and the EPA Discuss Their Partnership for Planetary Health. Available online: https://blog.aclima.io/aclima-google-and-the-epa-discuss-their-partnership-for-planetary-health-b0f5402bbed3 (accessed on 30 November 2015).
- Air Quality Egg. Available online: http://airqualityegg.com/ (accessed on 30 November 2015).
- United States Environmental Protection Agency (US EPA). Criteria Air Pollutants. Available online: https://www.epa.gov/criteria-air-pollutants (accessed on 23 July 2016).
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- United States Environmental Protection Agency (US EPA). Benefits Mapping and Analysis Program (BenMAP). Available online: http://www2.epa.gov/benmap/benmap-40 (accessed on 12 October 2015).
- Abt Associates Inc. BenMAP Environmental Benefits Mapping and Analysis Program User’s Manual 2010; U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Abt Associates Inc. BenMAP Environmental Benefits Mapping and Analysis Program User’s Manual Appendices; U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 77, 758–762. [Google Scholar]
- US Department of Transportation National Highway Planning Network: 2011 Archive. Available online: http://www.fhwa.dot.gov/planning/processes/tools/nhpn/2011/ (accessed on 6 December 2015).
- Rao, M. Investigating the Potential of Land Use Modifications to Mitigate the Respiratory Health Impacts of NO2: A Case Study in the Portland-Vancouver Metropolitan Area. Ph.D. Thesis, Portland State University, Portland, OR, USA, 2016. [Google Scholar]
- Wang, M.; Beelen, R.; Basagana, X.; Becker, T.; Cesaroni, G.; de Hoogh, K.; Dedele, A.; Declercq, C.; Dimakopoulou, K.; Eeftens, M.; et al. Evaluation of Land Use Regression Models for NO2 and Particulate Matter in 20 European Study Areas: The ESCAPE Project. Environ. Sci. Technol. 2013, 47, 4357–4364. [Google Scholar] [CrossRef] [PubMed]
- Ross, Z.; English, P.B.; Scalf, R.; Gunier, R.; Smorodinsky, S.; Wall, S.; Jerrett, M. Nitrogen dioxide prediction in Southern California using land use regression modeling: Potential for environmental health analyses. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, C.M.; Koonce, P.; George, L.A. Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial. Atmos. Environ. 2015, 122, 133–141. [Google Scholar] [CrossRef]
- Strobl, C.; Hothorn, T.; Zeileis, A. Party on! A New, Conditional Variable-Importance Measure for Random Forests Available in the Party Package; University of Munich: Munich, Germany, 2009. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional Variable Importance for Random Forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Buehlmann, P.; Dudoit, S.; Molinaro, A.; Van Der Laan, M. Survival Ensembles. Biostatistics 2006, 7, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. Bioinformatics 2007, 8. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing. 2014. Available online: https://www.r-project.org/ (accessed on 28 June 2017).
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Technology Transfer Network: National Ambient Air Quality Stansards (NAAQS). Availble online: http://www3.epa.gov/ttn/naaqs/criteria.html (accessed on 1 December 2015).
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Sanchez, B.N.; Budtz-Jørgensen, E.; Ryan, L.M.; Hu, H. Structural equation models: A review with applications to environmental epidemiology. J. Am. Stat. Assoc. 2005, 100, 1443–1455. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.W.; Amram, O.; Wheeler, A.J.; Brauer, M. The transferability of NO and NO2 land use regression models between cities and pollutants. Atmos. Environ. 2011, 45, 369–378. [Google Scholar] [CrossRef]
- Poplawski, K.; Gould, T.; Setton, E.; Allen, R.; Su, J.; Larson, T.; Henderson, S.; Brauer, M.; Hystad, P.; Lightowlers, C.; et al. Intercity transferability of land use regression models for estimating ambient concentrations of nitrogen dioxide. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Salam, M.T.; Eckel, S.P.; Breton, C.V.; Gilliland, F.D. Chronic effects of air pollution on respiratory health in Southern California children: Findings from the Southern California Children’s Health Study. J. Thorac. Dis. 2015, 7, 46–58. [Google Scholar] [PubMed]
- Lemke, L.D.; Lamerato, L.E.; Xu, X.; Booza, J.C.; Reiners, J.J.; Raymond, D.M., III; Villeneuve, P.J.; Lavigne, E.; Larkin, D.; Krouse, H.J. Geospatial relationships of air pollution and acute asthma events across the Detroit-Windsor international border: Study design and preliminary results. J. Expo. Sci. Environ. Epidemiol. 2013, 24, 1–12. [Google Scholar]
- Penard-Morand, C.; Raherison, C.; Charpin, D.; Kopferschmitt, C.; Lavaud, F.; Caillaud, D.; Annesi-maesano, I. Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur. Respir. J. 2010, 36, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-Y.; Kim, H.; Bell, M.L. Does urban land-use increase risk of asthma symptoms? Environ. Res. 2015, 142, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J.; Vora, H.; McConnell, R.; Berhane, K.; Gilliland, F.; Thomas, D.; Lurmann, F.; Avol, E.; Kunzli, N.; Jerrett, M. Effect of exposure to traffic on lung development from 10 to 18 years of age: A cohort study. Lancet 2007, 369, 571–577. [Google Scholar] [CrossRef]
- Clark-Reyna, S.E.; Grineski, S.E.; Collins, T.W. Residential exposure to air toxics is linked to lower grade point averages among school children in El Paso, Texas, USA. Popul. Environ. 2016, 37, 319–340. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.H.; Butry, D.T.; Michael, Y.L.; Prestemon, J.P.; Liebhold, A.M.; Gatziolis, D.; Mao, M.Y. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. Am. J. Prev. Med. 2013, 44, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.H.; Michael, Y.L.; Butry, D.T.; Sullivan, A.D.; Chase, J.M. Urban trees and the risk of poor birth outcomes. Health Place 2011, 17, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; de Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Wesely, M.L.; Hicks, B.B. A review of the current status of knowledge on dry deposition. Atmos. Environ. 2000, 34, 2261–2282. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Hicks, B.B.; Camara, P. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ. 1987, 21, 91–101. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Nowak, D.J.; Civerolo, K.L.; Rao, S.T.; Sistla, G.; Luley, C.J.; Crane, D.E. A modeling study of the impact of urban trees on ozone. Atmos. Environ. 2000, 34, 1601–1613. [Google Scholar] [CrossRef]
- Takahashi, M.; Higaki, A.; Nohno, M.; Kamada, M.; Okamura, Y.; Matsui, K.; Kitani, S.; Morikawa, H. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 2005, 61, 633–639. [Google Scholar] [CrossRef] [PubMed]
Land Use/Land Cover | Data Source |
---|---|
Housing | US Census Bureau, 2010 (block level) |
Land cover classes (developed open space, high intensity development, trees, shrub/scrub, grassland, pasture, cultivated crops) | National Land Cover Database (NLCD), USGS, 2011 (30 m) |
Permitted NO2 emissions | National Emissions Inventory, EPA, 2011 (point sources) |
Elevation | USGS, 1/3 arc-second |
AADT | NHPN (2010) |
Roads (primary, secondary and local) | US Census Bureau, Tiger/Line (2013) |
Latitude & Longitude | Google Earth, ArcMAP |
Season and Model | Goodness of Fit | Model Bias | Prediction Error | ||
---|---|---|---|---|---|
Adj R2 | Normalized Mean Bias | Normalized Mean Error | Validation MAE (NO2 ppb) | Validation RMSE (NO2 ppb) | |
Summer | |||||
LUR | 0.75 | 5% | 20% | 2.3 | 2.8 |
LURF | 0.80 | 9% | 20% | 2.0 | 2.4 |
Winter | |||||
LUR | 0.80 | 5% | 18% | 2.5 | 3.4 |
LURF | 0.83 | 12% | 24% | 2.8 | 3.8 |
LULC Category | NO2 (ppb) Associated with Land Use | Range NO2 (ppb) | Typical LULC Values within Model Buffer | Range LULC Values within Model Buffer |
---|---|---|---|---|
Development, high-density | 0.7 | 0–3.8 | 0.76 km2 | 0–7.9 km2 |
Roadways | 0.9 | 0–6.2 | ||
Vehicle Miles travelled on highways | 0.4 | 0–3.5 | 133,916 | 0–1,329,013 |
Primary Roads | 0.1 | 0–0.9 | 1.7 km | 0–20 km |
Secondary Roads | 0.2 | 0–1.9 | 4.6 km | 0–44 km |
Local Roads | 0.2 | 0–0.81 | 70 km | 1.5–242 km |
Railroads | 0.1 | 0–0.6 | 4.3 km | 0–60 km |
Housing | 0.1 | 0–0.7 | 42,917 | 5–311,582 |
Permitted NO2 emissions | 0.0 | 0–0.0 | 19 tons/year | 0–1064 tons/year |
Developed open space | −0.3 | −0.9–0 | 0.24 ha | 0–3 ha |
Trees | −0.4 | −1.0–0 | 6.7 ha | 0–50 ha |
Shrub/Scrub | −0.1 | −0.2–0 | 24 ha | 0–495 ha |
Health Impact | Annual Incidence Rate (per 100,000) Associated with LULC Category | ||||||
---|---|---|---|---|---|---|---|
All NO2 | VMTf | Sec. Rds | High Intensity Dev. | Med. Intensity Dev. | Open Dev. | Trees | |
Asthma Exacerbation, Missed school days (4–12 year olds) | 14,455 | 1109 | 1322 | 2393 | 1587 | −583 | −472 |
Asthma Exacerbation, One or More Symptoms (4–12 year olds) | 42,171 | 3220 | 3837 | 6950 | 4606 | −1692 | −1369 |
Cough (7–14 year olds) | 12,070 | 926 | 1108 | 1989 | 1338 | −503 | −414 |
Emergency Room Visits, Asthma (75 years and older) | 22 | 2 | 2 | 3 | 2 | −1 | −1 |
Hospital admissions, Asthma (younger than 30 years) | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Hospital admissions, Asthma (30 years and older) | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Hospital admissions, Chronic Lung Disease (less Asthma) (65 years and older) | 64 | 6 | 6 | 11 | 6 | −2 | −2 |
Hospital admissions, All Respiratory (65 years and older) | 137 | 12 | 13 | 23 | 13 | −5 | −4 |
% Change in NO2-Related Asthma Exacerbation Symptoms in 4–12 Year Olds Due to Changes in NO2 Associated with LULC Modifications | ||||
---|---|---|---|---|
LULC Category/LULC Change | VMTf | VMTf (in Worst NO2 Quintile) | Trees | Trees (in Worst NO2 Quintile) |
10% decrease | −0.5% | −0.8% | 2% | 1% |
5% decrease | −0.2% | −0.4% | 2% | 1% |
2% decrease | −0.1% | −0.2% | 1% | 1% |
2% increase | 0.1% | 0.1% | −3% | −3% |
5% increase | 0.2% | 0.3% | −6% | −6% |
10% increase | 0.4% | 0.7% | −10% | −11% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, M.; George, L.A.; Shandas, V.; Rosenstiel, T.N. Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health. Int. J. Environ. Res. Public Health 2017, 14, 750. https://doi.org/10.3390/ijerph14070750
Rao M, George LA, Shandas V, Rosenstiel TN. Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health. International Journal of Environmental Research and Public Health. 2017; 14(7):750. https://doi.org/10.3390/ijerph14070750
Chicago/Turabian StyleRao, Meenakshi, Linda A. George, Vivek Shandas, and Todd N. Rosenstiel. 2017. "Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health" International Journal of Environmental Research and Public Health 14, no. 7: 750. https://doi.org/10.3390/ijerph14070750
APA StyleRao, M., George, L. A., Shandas, V., & Rosenstiel, T. N. (2017). Assessing the Potential of Land Use Modification to Mitigate Ambient NO2 and Its Consequences for Respiratory Health. International Journal of Environmental Research and Public Health, 14(7), 750. https://doi.org/10.3390/ijerph14070750