Legionella Colonization of Hotel Water Systems in Touristic Places of Greece: Association with System Characteristics and Physicochemical Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hygiene Inspection and Risk Assessment
2.2. Microbiological Analysis
2.3. Physicochemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No | Checkpoint | YES √ | NO ✕ | Observations |
---|---|---|---|---|
General points | ||||
1 | Meter pressure 1–12 atm | −1 | ||
2 | Filters in good condition | −2 | ||
3 | Insulation in good condition | −2 | ||
4 | Absence of leaks in the system | −2 | ||
5 * | The tank is well maintained and there are no regiments | −3 | ||
6 | There are covers over the tanks and meshes of wire over every open water pipe | −1 | ||
7 | The amount of the stored water is used within one day | −1 | ||
8 * | The system is cleaned and disinfected when it is not used for over a month | −3 | ||
9 * | The system and the tanks are treated with the proper disinfectants at least once in a year | −3 | ||
10 | Water supply is not interrupted for a long time | −1 | ||
11 | Taps that are not in use are removed from the system | −2 | ||
12 | Check on the water system outline | |||
Cold-water system | ||||
13 | The coolers are in a good condition | −1 | ||
14 | The filters of the coolers are in a good condition | −1 | ||
Hot-water system | ||||
15 | The system responds sufficiently in rush hours | −1 | ||
16 | The is no change in water consumption | −1 | ||
17 * | Absence of stagnant water in the pipes for over a week | −3 | ||
18 * | If NO, flushing procedure is applied | −3 | ||
19 * | The showers are clean without salts | −3 | ||
Water heaters and water storage devices | ||||
20 | The device is dried and controlled | −1 | ||
21 | The device is cleaned if necessary | −2 | ||
22 | The hot-water export pipe is drained | −1 | ||
23 | They are well maintained | −2 | ||
Batteries | ||||
24 | Operated and maintained according to the manufacturer’s advice | −2 | ||
Water fire-fighting facilities | ||||
25 | There is no water regression from the fire-fighting water to the water supply system | −2 | ||
ANNEX I: Checkbook data | ||||
26 | There is a check book | −2 | ||
27 * | Regular water sampling is performed at least every 6 months | −3 | ||
28 | There are no positive results recorded in the checkbook (if there are any) | −2 | ||
29 * | No Legionella detection above 10 cfu/10 mL was recorded in the past 6 months | −3 | ||
ANNEX II: Measurements by the health service personnel | ||||
30 * | Outgoing cold-water temperature is lower than 25 °C | −3 | ||
31 | Tap cold-water temperature is lower than 25 °C, after two minutes of flow | −2 | ||
32 | Hot-water temperature is at least 50 °C, after one minute of flow | −2 | ||
33 * | The variation between two serial temperature measurements of hot water with a flow interval of one minute should not exceed 10 °C | −3 | ||
34 | The water is stored and distributed at 60 °C | −2 | ||
35 | There is no temperature stratification of the water circulating in the heating and storage water devices | −1 | ||
36 | If the system is indirect, the temperature of the water coming out from the heating device should be at least 60 °C, and that of the returning water should be at least 50 °C | −2 | ||
37 | The pH measured is between 6.5–8.5 | −2 | ||
38 * | The residual chlorine measured is between 0.2–0.5 mg/L | −3 | ||
39 | Absence of problems in taste or in odor | −1 |
References
- Almeida, D.; Cristovam, E.; Caldeira, D.; Ferreira, J.J.; Marques, T. Are there effective interventions to prevent hospital-acquired Legionnaires’ disease or to reduce environmental reservoirs of Legionella in hospitals? A systematic review. Am. J. Infect. Control 2016, 44, e183–e188. [Google Scholar] [CrossRef] [PubMed]
- Marston, B.J.; Lipman, H.B.; Breiman, R.F. Surveillance for Legionnaires’ disease: Risk factors for morbidity and mortality. Arch. Intern. Med. 1994, 154, 2417–2422. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention: Legionella (Legionnaires’ Disease and Pontiac Fever). Available online: https://www.cdc.gov/legionella/clinicians/disease-specifics.html (accessed on 13 November 2018).
- Burillo, A.; Pedro-Botet, M.L.; Bouza, E. Microbiology and epidemiology of legionnaire’s disease. Infect. Dis. Clin. 2017, 31, 7–27. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Legionnaires’ Disease in Europe, 2014; ECDC: Stockholm, Sweden, 2016. [Google Scholar]
- Garrison, L.E.; Shaw, K.M.; McCollum, J.T.; Dexter, C.; Vagnone, P.M.; Thompson, J.H.; Giambrone, G.; White, B.; Thomas, S.; Carpenter, L.R.; et al. On-site availability of Legionella testing in acute care hospitals, United States. Infect. Control Hosp. Epidemiol. 2014, 35, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Reller, L.B.; Weinstein, M.P.; Murdoch, D.R. Diagnosis of Legionella infection. Clin. Infect. Dis. 2003, 36, 64–69. [Google Scholar]
- Hellenic Centre of Disease Control and Prevention. Available online: http://www.keelpno.gr/en-us/hcdcp.aspx (accessed on 10 September 2018).
- Greek Ministry of Tourism. Available online: http://www.mintour.gov.gr/Statistics/statistiki (accessed on 10 September 2018).
- Greek Tourism Confederation. Available online: http://sete.gr/el/statistika-vivliothiki/statistika/ (accessed on 10 September 2018).
- Maini, R.; Naik, F.; Harrison, T.G.; Mentasti, M.; Spala, G.; Velonakis, E.; Hadjichristodoulou, C.; de Jong, B.; Vatopoulos, A.; Phin, N. Travel-associated Legionnaires disease in residents from England and Wales travelling to Corfu, Greece, August to October 2011. Euro Surveill. 2012, 17, 20240. [Google Scholar] [CrossRef]
- Ji, P.; Rhoads, W.J.; Edwards, M.A.; Pruden, A. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome. ISME J. 2017, 11, 1318–1330. [Google Scholar] [CrossRef]
- Ji, P.; Parks, J.; Edwards, M.A.; Pruden, A. Impact of water chemistry, pipe material and stagnation on the building plumbing microbiome. PLoS ONE 2015, 10, e0141087. [Google Scholar] [CrossRef]
- Mouchtouri, V.; Velonakis, E.; Tsakalof, A.; Kapoula, C.; Goutziana, G.; Vatopoulos, A.; Kremastinou, J.; Hadjichristodoulou, C. Risk factors for contamination of hotel water distribution systems by Legionella species. Appl. Environ. Microbiol. 2007, 73, 1489–1492. [Google Scholar] [CrossRef]
- Besic, A.; Obradovic, Z.; Dautbegovic, A.; Obradovic, A. The effect of temperature and chlorine residual on the presence of Legionella spp. in water systems of public and tourist facilities. J. Health Sci. 2017, 7, 50. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Prussin, A.J.; Ahmed, W.; Haas, C.N. Outbreaks of Legionnaires’ Disease and Pontiac Fever 2006–2017. Curr. Environ. Health Rep. 2018, 5, 263–271. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization: ISO 5667-5. Water Quality- Sampling—Part 5: Guidance on Sampling of Drinking Water from Treatment Works and Piped Distribution Systems; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Hadjichristodoulou, C.; Goutziana, G.; Mouchtouri, V.; Kapoula, C.; Konstantinidis, A.; Velonakis, E.; Vatopoulos, A.; Kremastinou, J. Evaluation of standardized scored inspections for Legionnaires’ disease prevention, during the Athens 2004 Olympics. Epidemiol. Infect. 2006, 134, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Banwell, K. Environmental health preparation for the Sydney 2000 Olympic and Paralympic Games. New South Wales Public Health Bull. 2000, 11, 147–148. [Google Scholar] [CrossRef]
- International Organization for Standardization: ISO 6222:1999. Water Quality—Enumeration of Culturable Micro-Organisms—Colony Count by Inoculation in a Nutrient Agar Culture Medium; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- International Organization for Standardization: ISO 11731:1998. Water Quality—Detection and Enumeration of Legionella; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Alexiou, S.D.; Antoniadis, A.; Papapaganagiotou, J.; Stefanou, T. Isolation of Legionella pneumophila from hotels of Greece. Eur. J. Epidemiol. 1989, 5, 47–50. [Google Scholar] [CrossRef]
- Fragou, K.; Kokkinos, P.; Gogos, C.; Alamanos, Y.; Vantarakis, A. Prevalence of Legionella spp. in water systems of hospitals and hotels in South Western Greece. Int. J. Environ. Health Res. 2012, 22, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Rakić, A.; Perić, J.; Štambuk-Giljanović, N.; Mikrut, A.; Bakavić, A. Legionella species in year-round vs. seasonal accommodation water supply systems. Arch. Ind. Hyg. Toxicol. 2011, 62, 335–340. [Google Scholar]
- Bonetta, S.; Ferretti, E.; Balocco, F.; Carraro, E. Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods. J. Appl. Microbiol. 2010, 108, 1576–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borella, P.; Montagna, M.T.; Stampi, S.; Stancanelli, G.; Romano-Spica, V.; Triassi, M.; Marchesi, I.; Bargellini, A.; Tatò, D.; Napoli, C.; et al. Legionella contamination in hot water of Italian hotels. Appl. Environ. Microbiol. 2005, 71, 5805–5813. [Google Scholar] [CrossRef] [PubMed]
- Leoni, E.; De Luca, G.; Legnani, P.P.; Sacchetti, R.; Stampi, S.; Zanetti, F. Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems. J. Appl. Microbiol. 2005, 98, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Totaro, M.; Valentini, P.; Costa, A.L.; Frendo, L.; Cappello, A.; Casini, B.; Micolli, M.; Privitera, G.; Baggiani, A. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey. Int. J. Environ. Res. Public Health 2017, 14, 1296. [Google Scholar] [CrossRef]
- Erdogan, H.; Arslan, H. Colonization of Legionella species in hotel water systems in Turkey. J. Travel Med. 2007, 14, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Uzel, A.; Ucar, F.; Esin Hameş-Kocabaş, E. Prevalence of Legionella pneumophila serogroup 1 in water distribution systems in Izmir province of Turkey. APMIS 2005, 113, 664–669. [Google Scholar] [CrossRef]
- Bartlett, C.L.R.; Kurtz, J.B.; Hutchison, J.G.P.; Turner, G.C.; Wright, A.E. Legionella in hospital and hotel water supplies. Lancet 1983, 322, 1315. [Google Scholar] [CrossRef]
- Hellenic Government. Ministerial Decision No. G1(D)/GP/OIK. 67322/6-9-2017. In Water Quality for Human Consumption, Adaptation of the Greek Legislation to Directive 98/83/EC of the COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption as Amended by Directive 2015/1787(L260, 7.10.2015); Official Gazette Issue Number 3282/B/2017; Hellenic Government: Athens, Greece, 2017. [Google Scholar]
- Hadjichristodoulou, C.; Mouchtouri, V.; Vousoureli, A.; Konstantinidis, A.; Petrikos, P.; Velonakis, E.; Boufa, P.; Kremastinou, J. Waterborne diseases prevention: Evaluation of inspection scoring system for water sites according to water microbiological tests during the Athens 2004 pre-Olympic and Olympic period. J. Epidemiol. Community Health 2006, 60, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Legionella and the Prevention of Legionellosis; WHO: Geneva, Switzerland, 2007.
- Chen, Y.S.; Lin, Y.E.; Liu, Y.C.; Huang, W.K.; Shih, H.Y.; Wann, S.R.; Lee, S.S.; Tsai, H.C.; Li, C.H.; Chao, H.L.; et al. Efficacy of point-of-entry copper–silver ionisation system in eradicating Legionella pneumophila in a tropical tertiary care hospital: Implications for hospitals contaminated with Legionella in both hot and cold water. J. Hosp. Infect. 2008, 68, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Stout, J.E.; Boldin, M.; Rugh, J.; Diven, W.F.; Yu, V.L. Intermittent use of copper-silver ionization for Legionella control in water distribution systems: A potential option in buildings housing individuals at low risk of infection. Clin. Infect. Dis. 1998, 26, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Stout, J.E.; Tedesco, L.; Boldin, M.; Hwang, C.; Diven, W.F.; Yu, V.L. Controlled evaluation of copper-silver ionization in eradicating Legionella pneumophila from a hospital water distribution system. J. Infect. Dis. 1994, 169, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Edagawa, A.; Kimura, A.; Tanaka, H.; Tomioka, K.; Sakabe, K.; Nakajima, C.; Suzuki, Y. Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J. Appl. Microbiol. 2008, 105, 2104–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conley, L.F.; Towner, S.G.; Wolford, R.S.; Stephenson, T.E.; McNamara, A.M.; Wadowsky, R.M.; Yee, R.B. An alkaline approach to treating cooling towers for control of Legionella pneumophila. Appl. Environ. Microbiol. 1987, 53, 1775–1779. [Google Scholar]
- Bargellini, A.; Marchesi, I.; Righi, E.; Ferrari, A.; Cencetti, S.; Borella, P.; Rovesti, S. Parameters predictive of Legionella contamination in hot water systems: Association with trace elements and heterotrophic plate counts. Water Res. 2011, 45, 2315–2321. [Google Scholar] [CrossRef]
- Lasheras, A.; Boulestreau, H.; Rogues, A.M.; Ohayon-Courtes, C.; Labadie, J.C.; Gachie, J.P. Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am. J. Infect. Control 2006, 34, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Kusnetsov, J.; Torvinen, E.; Perola, O.; Nousiainen, T.; Katila, M.L. Colonization of hospital water systems by legionellae, mycobacteria and other heterotrophic bacteria potentially hazardous to risk group patients. APMIS 2003, 111, 546–556. [Google Scholar] [CrossRef] [PubMed]
- European Technical Guidelines for Prevention, Control and Investigation of Infections Caused by Legionella Species; The European Guidelines Working Group June 2017; ECDC: Solna Municipality, Sweden, 2017.
Classification | Intervention Measures | |||
---|---|---|---|---|
Frequency | % | RR * | p-Value ** | |
Adequate or unsatisfactory (score ≤−7) | 16 out of 42 | 38.1 | 7.67 | 0.043 |
Satisfactory (score 0 to −6) | 0 out of 9 | 0.0 |
Parameter | Hot Water (n = 239) | Cold Water (n = 266) | |||||
---|---|---|---|---|---|---|---|
Frequency | % | Frequency | % | RR | 95% CIs | p-Value * | |
Legionella spp. | 100 | 41.8 | 57 | 21.4 | 1.95 | 1.48–2.57 | <0.001 |
Lp sg. 1 | 54 | 22.6 | 35 | 13.2 | 1.72 | 1.16–2.53 | 0.005 |
Lp s.g. 2–15 | 72 | 30.1 | 30 | 11.3 | 2.67 | 1.81–3.94 | <0.001 |
Legionella non-pneumophila | 26 | 10.9 | 20 | 7.5 | 1.45 | 0.83–2.52 | 0.190 |
Legionella spp. | |||
---|---|---|---|
Correlation Index (*) | N (Number of Samples Analyzed) | p-Value | |
Free disinfectant concentration (mg/L) | −0.285 | 157 | <0.001 |
pH | 0.188 | 157 | 0.018 |
Total aerobic count (cfu/mL) | 0.230 | 158 | 0.004 |
Conductivity (μS/cm) (250C) | 0.175 | 144 | 0.036 |
Hardness (mg CaCO3/L) | 0.222 | 144 | 0.008 |
Calcium (mg CaCO3/L) | 0.170 | 144 | 0.041 |
Iron (Fe) (μg/L) | −0.010 | 155 | 0.899 |
Zinc (Zn) (μg/L) | 0.116 | 40 | 0.477 |
Manganese (Mn) (μg/L) | 0.052 | 139 | 0.546 |
Parameter | Legionella spp. (+) | |||||
---|---|---|---|---|---|---|
Frequency | % | RR | 95% CIs | p-Value * | ||
Free disinfectant concentration (mg/L) | <0.375 | 33/89 | 37.1 | 8.40 | 2.60–26.25 | <0.001 |
≥0.375 | 3/68 | 4.4 | ||||
pH | ≥7.45 | 23/67 | 34.3 | 2.38 | 1.30–4.34 | 0.003 |
<7.45 | 13/90 | 14.4 | ||||
Total aerobic count (cfu/mL) | ≥2.5 × 104 | 24/69 | 34.8 | 2.58 | 1.39–4.78 | 0.002 |
<2.5 × 104 | 12/89 | 13.5 | ||||
Conductivity (μS/cm) (25 °C) | ≥1775 | 14/28 | 50 | 2.90 | 1.68–5.00. | <0.001 |
<1775 | 20/116 | 17.2 | ||||
Hardness (mg CaCO3/L) | ≥321 | 28/72 | 38.9 | 4.67 | 2.06–10.59 | <0.001 |
<321 | 6/72 | 8.3 | ||||
Calcium (mg CaCO3/L) | ≥150 | 29/92 | 31.5 | 3.28 | 1.35–7.95 | 0.003 |
<150 | 5/52 | 9.6 | ||||
Pipe material | Copper (+) | 8/66 | 12.1 | 0.40 | 0.19–0.82 | 0.007 |
Copper (−) | 28/92 | 30.4 |
Parameter | OR | 95% CIs | p-Value | |
---|---|---|---|---|
Free disinfectant concentration (mg/L) | <0.375 vs. >0.375 | 9.76 | 2.46–38.66 | 0.001 |
pH | ≥7.45 vs. <7.45 | 4.05 | 1.47–11.19 | 0.007 |
Total aerobic count (cfu/mL) | ≥2.5 × 104 vs. <2.5 × 104 | 2.63 | 0.98–7.09 | 0.056 |
Hardness (mg CaCO3/L) | ≥321 vs. <321 | 5.63 | 1.82–17.41 | 0.003 |
Pipe material | Copper (+) vs. Copper (−) | 0.29 | 0.10–0.85 | 0.024 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyritsi, M.A.; Mouchtouri, V.A.; Katsioulis, A.; Kostara, E.; Nakoulas, V.; Hatzinikou, M.; Hadjichristodoulou, C. Legionella Colonization of Hotel Water Systems in Touristic Places of Greece: Association with System Characteristics and Physicochemical Parameters. Int. J. Environ. Res. Public Health 2018, 15, 2707. https://doi.org/10.3390/ijerph15122707
Kyritsi MA, Mouchtouri VA, Katsioulis A, Kostara E, Nakoulas V, Hatzinikou M, Hadjichristodoulou C. Legionella Colonization of Hotel Water Systems in Touristic Places of Greece: Association with System Characteristics and Physicochemical Parameters. International Journal of Environmental Research and Public Health. 2018; 15(12):2707. https://doi.org/10.3390/ijerph15122707
Chicago/Turabian StyleKyritsi, Maria A., Varvara A. Mouchtouri, Antonis Katsioulis, Elina Kostara, Vasileios Nakoulas, Marina Hatzinikou, and Christos Hadjichristodoulou. 2018. "Legionella Colonization of Hotel Water Systems in Touristic Places of Greece: Association with System Characteristics and Physicochemical Parameters" International Journal of Environmental Research and Public Health 15, no. 12: 2707. https://doi.org/10.3390/ijerph15122707