A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings
Abstract
:1. Introduction
2. Particulate Matter’s Effects on Health
3. Materials and Methods
- WEMOS D1—This device incorporates an ESP8266 Wi-Fi chip with integrated antenna switches, RF balun, power amplifier, low noise receive amplifier, filters, and power management modules. It supports 802.11 b/g/n protocols, Wi-Fi 2.4 GHz, support WPA/WPA2, has an integrated low power 32-bit MCU, an integrated 10-bit ADC, has a standby power consumption of <1.0 mW (DTIM3) and can operate at temperature range −40~125 °C. The WEMOS D1 that offers 11/1 digital input/output pins, 1 analogue input, and a micro USB interface for development and power supply. It is totally supported by Arduino IDE platform, has an 80/160 MHZ CPU clock, 4 MB Flash, a 3.3 V operating voltage, a compact dimension of 34.2 mm × 25.6 mm, and a weight of 10 g.
- PMS 5003—this PM sensor was developed with special attention to its mechanical design which prevents dust accumulation where the laser and diode are mounted. Regarding electrical and electronic components, the PMS5003 incorporates Cypress CY8C4245 CPU, an ARM Cortex-M0 running at 48 Mhz with dedicated ADC. The PMS5003 applies the scattering principle to measure the value of particles suspended in the air with a diameter of 10 microns or less (≤PM10), 2.5 microns or less (≤PM2.5) and 1.0 microns or less (≤PM1.0). This PM sensor has a standby power consumption of <0.2 mW and can operate in a temperature range of −10~60 °C.
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Walsh, P.J.; Dudney, C.S.; Copenhaver, E.D. Indoor Air Quality; CRC Press: Boca Raton, FL, USA, 1983. [Google Scholar]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor Air Pollution in Developing Countries: A Major Environmental and Public Health Challenge; Bulletin of the World Health Organization: Geneva, Switzerland, 2000; Volume 78, pp. 1078–1092. [Google Scholar]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2016, 11, 284–295. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing: 1950–2050. Pop. Dev. Rev. 2002, 28, 11–13. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). The State of Aging and Health in America 2007. Available online: https://www.cdc.gov/aging/pdf/saha_2007.pdf (accessed on 2 December 2017).
- Koleva, P.; Tonchev, K.; Balabanov, G.; Manolova, A.; Poulkov, V. Challenges in designing and implementation of an effective Ambient Assisted Living system. In Proceedings of the 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, Serbia, 4–17 Ocober 2015; pp. 305–308. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar]
- Luo, J.; Chen, Y.; Tang, K.; Luo, J. Remote monitoring information system and its applications based on the Internet of Things. In Proceedings of the FBIE 2009 International Conference on Future BioMedical Information Engineering, Sanya, China, 13–14 December 2009; pp. 482–485. [Google Scholar]
- Swan, M. Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. J. Sens. Actuat. Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef]
- De Vito, S.; Fattoruso, G.; Liguoro, R.; Oliviero, A.; Massera, E.; Sansone, C.; Casola, V.; Di Francia, G. Cooperative 3D Air Quality Assessment with Wireless Chemical Sensing Networks. Procedia Eng. 2011, 25, 84–87. [Google Scholar] [CrossRef]
- Preethichandra, D.M.G. Design of a smart indoor air quality monitoring wireless sensor network for assisted living. In Proceedings of the 2013 IEEE International, Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 1306–1310. [Google Scholar]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring Indoor Air Quality for Enhanced Occupational Health. J. Med. Syst. 2017, 41, 23. [Google Scholar] [CrossRef] [PubMed]
- Marques, G.; Pitarma, R. Health informatics for indoor air quality monitoring. In Proceedings of the 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), Las Palmas, Spain, 15–18 June 2016; pp. 1–6. [Google Scholar]
- Pitarma, R.; Marques, G.; Caetano, F. Monitoring Indoor Air Quality to Improve Occupational Health. In New Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Teixeira, M.M., Eds.; Springer International Publishing: Basel, Switzerland, 2016; Volume 445, pp. 13–21. [Google Scholar]
- Marques, G.; Pitarma, R. Smartphone Application for Enhanced Indoor Health Environments. J. Inf. Syst. Eng. Manag. 2016, 4, 9. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. Monitoring Health Factors in Indoor Living Environments Using Internet of Things. In Recent Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Basel, Switzerland, 2017; Volume 570, pp. 785–794. [Google Scholar]
- Marques, G.; Pitarma, R. Monitoring and control of the indoor environment. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 14–17 June 2017; pp. 1–6. [Google Scholar]
- Feria, F.; Parra, O.J.S.; Daza, B.S.R. Design of an Architecture for Medical Applications in IoT. In Cooperative Design, Visualization, and Engineering; Luo, Y., Ed.; Springer International Publishing: Basel, Switzerland, 2016; Volume 9929, pp. 263–270. [Google Scholar]
- Ray, P.P. Internet of things for smart agriculture: Technologies, practices and future direction. J. Ambient Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Matz, J.R.; Wylie, S.; Kriesky, J. Participatory Air Monitoring in the Midst of Uncertainty: Residents’ Experiences with the Speck Sensor. Engag. Sci. Technol. Soc. 2017, 3, 464. [Google Scholar] [CrossRef]
- Demuth, D.; Nuest, D.; Bröring, A.; Pebesma, E. The AirQuality SenseBox. In EGU General Assembly Conference Abstracts; Copernicus: Viena, Austria, 2013; Volume 15. [Google Scholar]
- Lohani, D.; Acharya, D. Smartvent: A context aware iot system to measure indoor air quality and ventilation rate. In Proceedings of the 2016 17th IEEE International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016; Volume 2, pp. 64–69. [Google Scholar]
- Srivatsa, P.; Pandhare, A. Indoor Air Quality: IoT Solution. Available online: http://www.ijrat.org/downloads/ncpci2016/ncpci-46.pdf (accessed on 19 April 2018).
- Salamone, F.; Belussi, L.; Danza, L.; Galanos, T.; Ghellere, M.; Meroni, I. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors 2017, 17, 1021. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sridevi, S.; Pitchiah, R. Indoor air quality monitoring using wireless sensor network. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 422–427. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Utell, M.J.; Frampton, M.W. Acute Health Effects of Ambient Air Pollution: The Ultrafine Particle Hypothesis. J. Aerosol Med. 2000, 13, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A. Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W.; Klepeis, N.E. Environmental Tobacco Smoke Particles. In Indoor Environment; Morawska, L., Salthammer, T., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; pp. 245–274. [Google Scholar]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2006. [Google Scholar]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Heal, M.R.; Kumar, P.; Harrison, R.M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, S.; Lee, N.; Eom, I.; Lee, B.; Tsai, P.J.; Lee, K.; Yoon, C. Comparison of Real Time Nanoparticle Monitoring Instruments in the Workplaces. Saf. Health Work 2016, 7, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [PubMed]
- Pope, C.A., III. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef] [PubMed]
- Seaton, A.; Godden, D.; MacNee, W.; Donaldson, K. Particulate air pollution and acute health effects. Lancet 1995, 345, 176–178. [Google Scholar] [PubMed]
- Nel, A. ATMOSPHERE: Enhanced: Air Pollution-Related Illness: Effects of Particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Penttinen, P.; Timonen, K.L.; Tiittanen, P.; Mirme, A.; Ruuskanen, J.; Pekkanen, J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Respir. J. 2001, 17, 428. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.A.; Alexis, N.; Barnes, C.; Bernstein, I.L.; Nel, A.; Peden, D.; Diaz-Sanchez, D.; Tarlo, S.M.; Williams, P.B. Health effects of air pollution. J. Allergy Clin. Immunol. 2004, 114, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, K.; Mori, K. Relationships between epinephrine, waking time, and self-estimates for naps at night. Physiol. Behav. 1992, 52, 397–400. [Google Scholar] [CrossRef]
- Dockery, D.W.; Schwartz, J.; Spengler, J.D. Air pollution and daily mortality: Associations with particulates and acid aerosols. Environ. Res. 1992, 59, 362–373. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Clayton, C.A.; Perritt, R.L.; Pellizzari, E.D.; Thomas, K.W.; Whitmore, R.W.; Wallace, L.A.; Ozkaynak, H.; Spengler, J.D. Particle Total Exposure Assessment Methodology (PTEAM) study: Distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a southern California community. J. Expo. Anal. Environ. Epidemiol. 1993, 3, 227–250. [Google Scholar] [PubMed]
- Janssen, N.A.; Hoek, G.; Brunekreef, B.; Harssema, H.; Mensink, I.; Zuidhof, A. Personal sampling of particles in adults: Relation among personal, indoor, and outdoor air concentrations. Am. J. Epidemiol. 1998, 147, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Ostro, B.; Chestnut, L. Assessing the Health Benefits of Reducing Particulate Matter Air Pollution in the United States. Environ. Res. 1998, 76, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.T.; Namenyi, J.; Yeh, H.C.; Mauderly, J.L.; Cuddihy, R.G. Physical Characterization of Cigarette Smoke Aerosol Generated from a Walton Smoke Machine. Aerosol Sci. Technol. 1990, 12, 364–375. [Google Scholar] [CrossRef]
- Spengler, J.D.; Dockery, D.W.; Turner, W.A.; Wolfson, J.M.; Ferris, B.G. Long-term measurements of respirable sulfates and particles inside and outside homes. Atmos. Environ. 1967, 15, 23–30. [Google Scholar] [CrossRef]
- Pope, C.A. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environ. Health Perspect. 2000, 108 (Suppl. 4), 713–723. [Google Scholar] [CrossRef] [PubMed]
MCU | Sensors | Architecture | Low Cost | Open-Source | Connectivity | Data Access | Easy Installation | |
---|---|---|---|---|---|---|---|---|
D. Lohani and D. Acharya [23] | Arduino UNO, ESP8266 | Temperature, Relative Humidity, CO2 | IoT | √ | √ | Wi-Fi, BLE | Mobile | × |
P. Srivatsa and A. Pandhare [24] | Raspberry Pi | CO2 | WSN/IoT | √ | √ | Wi-Fi | Web | × |
F. Salamone et al. [25] | Arduino UNO | CO2 | WSN | √ | √ | ZigBee | × | × |
S. Bhattacharya et al. [26] | Waspmote | CO, CO2, PM, Temperature, Relative Humidity | WSN | × | √ | ZigBee | Desktop | × |
F. Salamone et al. [27] | Arduino UNO | Temperature, Relative Humidity, CO2, Ligth, Air velocity | IoT | √ | √ | ZigBee/BLE | Mobile | × |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, G.; Roque Ferreira, C.; Pitarma, R. A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings. Int. J. Environ. Res. Public Health 2018, 15, 821. https://doi.org/10.3390/ijerph15040821
Marques G, Roque Ferreira C, Pitarma R. A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings. International Journal of Environmental Research and Public Health. 2018; 15(4):821. https://doi.org/10.3390/ijerph15040821
Chicago/Turabian StyleMarques, Gonçalo, Cristina Roque Ferreira, and Rui Pitarma. 2018. "A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings" International Journal of Environmental Research and Public Health 15, no. 4: 821. https://doi.org/10.3390/ijerph15040821
APA StyleMarques, G., Roque Ferreira, C., & Pitarma, R. (2018). A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings. International Journal of Environmental Research and Public Health, 15(4), 821. https://doi.org/10.3390/ijerph15040821