Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Offsite Consequence Analysis
2.2. Sensitivity Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cho, M.S.; Yoon, Y.S.; Kim, K.J.; Park, Y.S.; Kwon, Y.H.; Chun, K.S.; Yoon, J.H. Study on improved environmental impact assessment measures for chemical accidents. Korean J. Hazard. Mater. 2013, 1, 11–16. Available online: http://www.dbpia.co.kr/Article/NODE02270603 (accessed on 17 September 2017).
- Cort, R.D. The development of UK and European major hazards legislation and the review of the Seveso directive-the implications for industry. Disaster Prev. Manag. 1994, 3, 8–14. [Google Scholar] [CrossRef]
- Innes, R.; Mitra, A. Parties, politics, and regulation: Evidence from clean air act enforcement. Econ. Inq. 2015, 53, 522–539. [Google Scholar] [CrossRef]
- Jung, H.G.; Ma, J.G. A study on legal systems and politics to control chemicals: Focus on regulation of hazardous chemicals. Adm. Law J. 2016, 44, 191–222. Available online: http://uci.or.kr/G704-001312.2016..44.007 (accessed on 11 September 2017).
- Park, J.G.; Suh, Y.W.; Gan, S.Y.; Lee, S.W. Improvement Measures for Chemical Accident Policies in the Chemicals Control Act and Measures to Support the Industry(I); Korea Environment Institute: Seoul, Korea, 2013; pp. 1–24. ISBN 979-11-5980-070-2. [Google Scholar]
- Kim, D.J.; Lee, I.B.; Moon, J.Y.; Chun, Y.W. Offsite consequence analysis and safety management system process integration plan of safety management system. J. Korea Saf. Manag. Sci. 2016, 18, 63–70. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201631642279961 (accessed on 8 April 2017). [CrossRef]
- McCoy Associates, Inc. RMP Offsite Consequence Analysis Data Distribution Method Finalized; McCoy Associates, Inc.: Arlington, VA, USA, 2000; pp. 2.23–2.26. [Google Scholar]
- Lim, D.Y.; Seo, J.M.; Yoon, G.J.; Shim, M.S.; Lee, G.W.; Baek, U.S. Development of Off-Site Risk Assessment Program Improvement; National Institute Chemical Safety: Daejeon, Korea, 2015; pp. 1–59. [Google Scholar]
- Park, Y.K.; Kim, T.O. Evaluation of ammonia gas release in the solar cell manufacturing process using the ALOHA model. J. Odor Indoor Environ. 2015, 14, 136–149. [Google Scholar] [CrossRef]
- Jung, S.H.; Yoon, D.Y.; Ghim, Y.S. Usage characteristics of publicly-available accidental release models. J. KOSAE 1999, 15, 687–696. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO199911919857189 (accessed on 28 March 2017).
- National Institute Chemical Safety. Technical Guidelines for Selection of Accident Scenario; National Institute Chemical Safety: Daejeon, Korea, 2014; pp. 1–16. [Google Scholar]
- Yu, J.A.; Moon, J.Y.; Chun, K.S.; Hwang, M.S.; Noh, H.R.; Yang, H.S.; Lee, M.S. Characteristic analysis of the atmospheric dispersion assessment for the toxic gases belong to the accident precaution chemicals. In Proceedings of the 45th Meeting of KOSAE, Cheongju, Korea, 25 October 2007; Korean Society for Atmospheric Environment: Seoul, Korea, 2007; pp. 453–454. [Google Scholar]
- Won, G.M.; Lee, H.W.; Yu, J.A.; Hong, H.S.; Hwang, M.S.; Chun, K.S.; Choi, K.S.; Lee, M.S. Applicable evaluation of the latest land-use data for developing a real-time atmospheric field prediction of RAMS. J. KOSAE 2008, 24, 1–15. Available online: http://www.dbpia.co.kr/Article/NODE00959499 (accessed on 19 October 2017). [CrossRef]
- Yu, J.A.; Hwang, M.S.; Chun, K.S.; Kwon, Y.H.; Moon, J.Y.; Lee, J.S.; Yoon, I.; Park, C.H.; Park, Y.S.; Shin, S.I.; et al. Model sensitivity study on various ambient meteorological conditions using SLAB for hazardous chemical accidents. In Proceedings of the 43rd meeting of KOSAE, Mokpo, Korea, 26 October 2006; Korean Society for Atmospheric Environment: Seoul, Korea, 2006; pp. 101–102. [Google Scholar]
- Ministry of Environment. The Effect of Meteorological and Surface Characteristic Factors on the Diffusion of Hazardous Chemical Mass Leaks; Ministry of Environment: Sejong, Korea, 2010; pp. 1–111.
- Kim, J.H.; Jung, S.H. Offsite consequence modeling for HF accidental release scenarios. Theor. Appl. Chem. Eng. 2015, 21, 1176–1179. [Google Scholar] [CrossRef]
- Shin, C.H.; Park, J.H. An evaluation of the off-site risk of spill from a storage tank of nitric acid. Crisisonomy 2016, 12, 187–200. [Google Scholar] [CrossRef]
- Jung, S.H.; Lee, Y.S.; Lim, O.J.; Yoo, J.M. A Study on the Improvement of Environmental Impact Assessment of Industrial Complexes Based on Risk Assessment of Chemical Leakage Accidents; Korea Environment Institute: Seoul, Korea, 2013; pp. 3–225. ISBN 978-89-8464-786-2. [Google Scholar]
- Park, J.K.; Seo, Y.W. A Study on the Improvement of the Chemical Accident Response System; Korea Environment Institute: Seoul, Korea, 2013; pp. 1–122. [Google Scholar]
- Shin, C.H.; Lee, C.S.; Kang, J.E.; Ma, B.C.; Yoon, Y.; Yoon, J.H.; Park, J.H. Review on the safety management system of facilities handling hazardous chemicals under the chemical control act. Crisisonomy 2015, 11, 19–33. Available online: http://uci.or.kr/G704-SER000001473.2015.11.7.003 (accessed on 16 May 2017).
- National Institute Chemical Safety. Korea Off-Site Risk Assessment Supporting Tool User’s Manual; National Institute Chemical Safety: Daejeon, Korea, 2017; pp. 4–64. [Google Scholar]
- U.S. Environmental Protection Agency. ALOHA User’s Manual; U.S. Environmental Protection Agency: Washington, DC, USA; National Oceanic and Atmospheric Administration: Seattle, WA, USA, 2007; pp. 11–187.
- Ahn, S.R.; Kim, S.B.; Lee, J.H.; Chun, K.S. Study on chemical incident response plan identified as chemical accident statistics. Korean J. Hazard. Mater. 2014, 2, 50–54. Available online: http://www.dbpia.co.kr/Article/NODE02423733 (accessed on 6 July 2017).
- Lee, D.J.; Lyu, S.W.; Song, C.G. Improvement strategy for management of accident preparedness substances causing chemical accidents. J. Korean Soc. Saf. 2017, 32, 47–52. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201726868680895 (accessed on 22 November 2017). [CrossRef]
- You, J.S.; Chung, Y.J. Case analysis of the harmful chemical substances spill. Fire Sci. Eng. 2014, 28, 90–98. Available online: http://www.dbpia.co.kr/Article/NODE06070955 (accessed on 6 July 2017). [CrossRef]
- National Institute of Environmental Research. Hazardous Chemical Substance Accident Case Book; National Institute of Environmental Research: Incheon, Korea, 2007; pp. 3–197.
- American Industrial Hygiene Association. ERPG/WEEL Handbook; American Industrial Hygiene Association: Akron, OH, USA, 2017; pp. 1–31. ISBN 978-1-935082-81-1. [Google Scholar]
- Korean Statistics Information Service. Available online: http://kosis.kr (accessed on 2 January 2017).
- Lee, Y.M.; Chung, H.J.; Lee, S.J. A study on edit order of text cells on the MS Excel files. J. Korea Inst. Inf. Secur. Cryptol. 2014, 14, 319–325. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201418342936736 (accessed on 15 April 2017). [CrossRef]
- Hong, S.H.; Jung, S. Testing the interaction effects in regression and structural equation models: Theories and procedures. Korean J. Hum. Dev. 2014, 21, 1–24. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, H.G. Multifactor dimensionality reduction (MDR) analysis by dummy variables. Korean J. Appl. Stat. 2009, 22, 435–442. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO200917639072399 (accessed on 20 February 2017). [CrossRef]
- International Business Machines Corporation. IBM SPSS Statistics Base 24; IBM Corp.: New York, NY, USA, 2016; pp. 33–160. [Google Scholar]
- Park, H.S.; Jeong, S.M.; Chung, G.H. Frequency analysis of future maximum fresh snow depth using multiple regression model with interaction. J. Korean Soc. Hazard Mitig. 2016, 16, 369–376. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201621650493832 (accessed on 8 January 2017). [CrossRef]
- Korea Occupational Safety and Health Agency. Technical Guidelines for Selecting the Worst Leak Scenario; Korea Occupational Safety and Health Agency: Ulsan, Korea, 2012; pp. 1–14. [Google Scholar]
- Park, KS. Offsite risk assessment on toxic release. J. Korean Inst. Gas 2017, 21, 9–16. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201732663193045 (accessed on 17 August 2017). [CrossRef]
- Klein, T.; Kukkonen, J.; Dahl, A.; Bossioli, E.; Baklanov, A.; Vik, A.F.; Agnew, P.; Karatzas, K.D.; Sofiev, M. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality. AMBIO 2012, 41, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.T.; Kim, E.H.; Jeong, H.S.; Jeong, H.J.; Han, M.H. Influence of modelling approaches of diffusion coefficients on atmospheric dispersion factors. J. Radiat. Prot. 2013, 38, 60–67. Available online: http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201322045996209 (accessed on 4 June 2017). [CrossRef]
- Datasolution Consulting Team. SPSS Statistics Descriptive Statistics and Correlation Analysis; Datasolution: Seoul, Korea, 2016; pp. 1–118. ISBN 978-89-8839-397-0. [Google Scholar]
- Kwon, J.S.; Kim, Y.K.; Joo, S.Y.; Choi, G.S. Central limit theorems for fuzzy random sets. J. Fuzzy Log. Intell. Syst. 2005, 15, 337–342. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, T.Y. Computer simulation program for central limit theorem—Dynamic MS Excel program. J. Korean Data Inf. Sci. Soc. 2005, 16, 359–369. [Google Scholar]
- Park, B.J.; Roh, C.G.; Kim, J.S. A case study of panoramic section image collection method for measuring density—With matched image in the Seoul beltway Sapaesan Tunnel. J. Korea Inst. Intell. Transp. Syst. 2014, 13, 20–29. [Google Scholar] [CrossRef]
- Park, H.; Hwang, D.K.; Park, J.H.; Seong, D.O.; Yoo, J.S. Sensor positioning scheme using density probability models in non–uniform wireless sensor networks. J. Korea Contents Assoc. 2012, 12, 55–66. [Google Scholar] [CrossRef]
- Jun, S.H. An outlier data analysis using support vector regression. J. Korean Inst. Intell. Syst. 2008, 18, 876–880. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, J.K. Modelling methodology for estimation of the harmful hazardous distance and release time on release of hazardous toxic substances. J. Korean Soc. Environ. Adm. 2001, 7, 1–11. Available online: http://www.dbpia.co.kr/Article/NODE01409802 (accessed on 28 August 2016).
- Risk Management Program Guidance for Offsite Consequence Analysis. Available online: https://www.epa.gov/rmp/rmp-guidance-offsite-consequence-analysis (accessed on 5 January 2017).
- Globally Harmonized System-Material Safety Data Sheet (GHS-MSDS). Available online: http://msds.kosha.or.kr (accessed on 20 April 2017).
Tools | Classification | Information |
---|---|---|
Areal Location of Hazardous Atmospheres (ALOHA) | Measurement height above ground | 3 m |
Cloud cover | Partly cloudy | |
Source | Puddle | |
Puddle diameter | 10 m | |
Mass of puddle | 0.54 ton (50% hydrofluoric acid, HF), 0.42 ton (28% ammonia, NH3) 0.54 ton (35% hydrogen chloride, HCl), 0.6 ton (69% nitric acid, HNO3) | |
Ground type | Concrete | |
Korea Offsite Risk Assessment (KORA) | Equipment appearance | Vertical cylinder (drum) |
Equipment diameter | 3 m | |
Equipment height | 6 m | |
Storage amount | 30 ton | |
Operating pressure | 1.0 kg/cm2 | |
Bonded pipe diameter | 50 mm | |
Leakage type | Storage tank leakage | |
Height of leakage hole | 0.5 m | |
Diameter of leakage hole | 10 mm |
Weather Variables | 50% HF | 28% NH3 | |||||||
---|---|---|---|---|---|---|---|---|---|
KORA | ALOHA | KORA | ALOHA | ||||||
Urban (m) | Rural (m) | Urban (m) | Rural (m) | Urban (m) | Rural (m) | Urban (m) | Rural (m) | ||
Air Temperature | −5 °C | 36 | 77 | 38 | 71 | 84 | 181 | 95 | 156 |
0 °C | 36 | 77 | 42 | 77 | 84 | 182 | 106 | 175 | |
5 °C | 36 | 78 | 47 | 84 | 85 | 184 | 118 | 194 | |
10 °C | 37 | 79 | 53 | 91 | 86 | 186 | 132 | 217 | |
15 °C | 37 | 80 | 58 | 99 | 87 | 188 | 147 | 244 | |
20 °C | 37 | 80 | 64 | 108 | 88 | 189 | 164 | 273 | |
25 °C | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
30 °C | 38 | 82 | 81 | 136 | 89 | 193 | 200 | 336 | |
35 °C | 38 | 82 | 92 | 153 | 90 | 194 | 208 | 351 | |
Wind Speed | 1 m/s | 43 | 92 | 88 | 145 | 101 | 217 | 215 | 339 |
2 m/s | 39 | 85 | 80 | 133 | 93 | 200 | 199 | 318 | |
3 m/s | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
4 m/s | 36 | 78 | 68 | 114 | 86 | 185 | 169 | 283 | |
5 m/s | 35 | 76 | 66 | 111 | 83 | 180 | 160 | 266 | |
6 m/s | 35 | 75 | 64 | 108 | 82 | 176 | 152 | 252 | |
7 m/s | 34 | 73 | 63 | 106 | 80 | 173 | 145 | 241 | |
8 m/s | 34 | 72 | 61 | 104 | 79 | 170 | 139 | 231 | |
9 m/s | 33 | 71 | 60 | 102 | 78 | 168 | 135 | 222 | |
10 m/s | 33 | 70 | 59 | 100 | 77 | 166 | 130 | 215 | |
11 m/s | 32 | 70 | 58 | 99 | 76 | 164 | 126 | 208 | |
12 m/s | 32 | 69 | 57 | 98 | 75 | 162 | 122 | 203 | |
13 m/s | 32 | 68 | 56 | 97 | 75 | 161 | 119 | 197 | |
14 m/s | 31 | 68 | 55 | 96 | 74 | 160 | 116 | 193 | |
15 m/s | 31 | 67 | 54 | 95 | 73 | 158 | 114 | 189 | |
16 m/s | 31 | 67 | 53 | 94 | 73 | 157 | 111 | 184 | |
Humidity | 10% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 |
20% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
30% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
40% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
50% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
60% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
70% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
80% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
90% | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
Atmospheric Stability | A | 20 | 26 | 33 | 37 | 45 | 59 | 81 | 91 |
B | 20 | 39 | 38 | 56 | 45 | 90 | 95 | 138 | |
C | 26 | 58 | 49 | 83 | 59 | 133 | 128 | 207 | |
D | 38 | 81 | 71 | 119 | 88 | 191 | 183 | 306 | |
E | 60 | 130 | 118 | 198 | 140 | 307 | 305 | 461 | |
F | 60 | 221 | 145 | 351 | 140 | 532 | 378 | 734 |
50% HF | 28% NH3 | 30% HCl | 69% HNO3 | KORA | ALOHA | Urban | Rural | AT | WS | HU | AS | ID (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 37 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 37 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 37 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 43 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 39 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 35 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 35 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 34 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 34 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 33 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 33 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 31 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 31 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 31 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 20 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 20 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 26 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 38 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 77 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 77 |
Variable | β | t |
---|---|---|
Air temperature | −24.628 | −3.602 * |
Wind speed | −27.788 | −4.475 * |
Humidity | −10.885 | −1.592 |
KORA | −53.122 | −12.950 * |
Urban | −69.766 | −17.008 * |
50% HF | 32.556 | 5.612 * |
28% NH3 | 134.613 | 23.205 * |
35% HCl | 126.775 | 21.854 * |
Constant | 122.093 | 17.428 * |
F Value | 161.716 * | |
Adjusted R2 | 0.668 |
Chemicals | Weather Variables | KORA (m) | ALOHA (m) |
---|---|---|---|
28% NH3 | Atmospheric stability | 255.91 | 309.03 |
Air temperature | 231.28 | 284.40 | |
Wind speed | 228.12 | 281.25 | |
35% HCl | Atmospheric stability | 248.07 | 301.20 |
Air temperature | 223.45 | 276.57 | |
Wind speed | 220.29 | 273.41 | |
50% HF | Atmospheric stability | 153.86 | 206.98 |
Air temperature | 129.23 | 182.35 | |
Wind speed | 126.07 | 179.19 | |
69% HNO3 | Atmospheric stability | 121.30 | 174.42 |
Air temperature | 96.67 | 149.79 | |
Wind speed | 93.51 | 146.63 |
Chemicals | Weather Variables | KORA (m) | ALOHA (m) |
---|---|---|---|
28% NH3 | Atmospheric stability | 325.68 | 278.80 |
Air temperature | 301.05 | 354.17 | |
Wind speed | 297.89 | 351.01 | |
35% HCl | Atmospheric stability | 317.84 | 370.96 |
Air temperature | 293.21 | 346.33 | |
Wind speed | 290.05 | 343.17 | |
50% HF | Atmospheric stability | 223.62 | 276.74 |
Air temperature | 198.99 | 252.11 | |
Wind speed | 195.83 | 248.95 | |
69% HNO3 | Atmospheric stability | 191.06 | 244.19 |
Air temperature | 166.44 | 219.56 | |
Wind speed | 163.28 | 216.40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-U.; Moon, K.W.; Sohn, J.-R.; Byeon, S.-H. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States. Int. J. Environ. Res. Public Health 2018, 15, 1027. https://doi.org/10.3390/ijerph15051027
Kim M-U, Moon KW, Sohn J-R, Byeon S-H. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States. International Journal of Environmental Research and Public Health. 2018; 15(5):1027. https://doi.org/10.3390/ijerph15051027
Chicago/Turabian StyleKim, Min-Uk, Kyong Whan Moon, Jong-Ryeul Sohn, and Sang-Hoon Byeon. 2018. "Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States" International Journal of Environmental Research and Public Health 15, no. 5: 1027. https://doi.org/10.3390/ijerph15051027
APA StyleKim, M. -U., Moon, K. W., Sohn, J. -R., & Byeon, S. -H. (2018). Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States. International Journal of Environmental Research and Public Health, 15(5), 1027. https://doi.org/10.3390/ijerph15051027