Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. BTEX Sampling Condition
2.2. Domestic Combustion Scenario in a South African Low-Income Settlement
2.3. BTEX Sampling Instruments
2.4. Risk Assessment
2.4.1. Hazard Identification
2.4.2. Exposure Assessment
2.4.3. Toxicity Assessment and Risk Characterization
2.5. Quality Control
3. Results and Discussion
3.1. BTEX Concentration under Laboratory Conditions
3.2. Potential Health Risk Analysis of BTEX
4. Study Limitations
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atash, F. The deterioration of urban environments in developing countries: Mitigating the air pollution crisis in Tehran, Iran. Cities 2007, 24, 399–409. [Google Scholar] [CrossRef]
- Atabi, F.; Moattar, F.; Mansouri, N.; Alesheikh, A.A.; Mirzahosseini, S.A.H. Assessment of variations in benzene concentration produced from vehicles and gas stations in Tehran using GIS. Int. J. Environ. Sci. Technol. 2013, 10, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yu, D.; Yao, H.; Liu, X.; Qiao, Y. Coal combustion-generated aerosols: Formation and properties. Proc. Combust. Inst. 2011, 33, 1681–1697. [Google Scholar] [CrossRef]
- Borhani, F.; Noorpoor, A. Cancer Risk Assessment Benzene, Toluene, Ethylbenzene and Xylene (BTEX) in the Production of Insulation Bituminous. Environ. Energy Econ. Res. 2017, 1, 311–320. [Google Scholar]
- Garg, A. Pro-equity Effects of Ancillary Benefits of Climate Change Policies: A Case Study of Human Health Impacts of Outdoor Air Pollution in New Delhi. World Dev. 2011, 39, 1002–1025. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V.K. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ. Sci. Pollut. Res. 2014, 21, 2240–2248. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Gordon, S.; Bruce, N.; Grigg, J.; Hibberd, P.; Kurmi, O.; Lam, K.; Mortimer, K.; Asante, K.P.; Balakrishnan, K.; Balmes, J.; et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2014, 2, 823–860. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, K.; Cohen, A.; Smith, K.R. Addressing the Burden of Disease Attributable to Air Pollution in India: The Need to Integrate across Household. Environ Health Perspect. 2014, 122, A6–A7. [Google Scholar] [CrossRef]
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.D.; Jurvelin, J.; Koistinen, K.; Saarela, K.; Jantunen, M. VOC source identification from personal and residential indoor, outdoor and workplace microenvironment samples in EXPOLIS-Helsinki, Finland. Atmos. Environ. 2001, 35, 4829–4841. [Google Scholar] [CrossRef]
- Masekameni, D.; Makonese, T.; Annegarn, H.J. Optimisation of ventilation and ignition method for reducing emissions from coal-burning imbaulas. In Proceedings of the 22nd Conference Domestic Use of Energy Domest Use Energy, Cape Town, South Africa, 1–2 April 2014. [Google Scholar]
- Garte, S.; Taioli, E.; Popov, T.; Bolognesi, C.; Farmer, P.; Merlo, F. Genetic susceptibility to benzene toxicity in humans. J. Toxicol. Environ. Health Part A 2008, 71, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- Abbate, C.; Giorgianni, C.; Munao, F.; Brecciaroli, R. Neurotoxicity induced by exposure to toluene. An electrophysiologic study. Int. Arch. Occup. Environ. Health 1993, 64, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Ernstgård, L.; Gullstrand, E.; Löf, A.; Johanson, G. Are women more sensitive than men to 2-propanol and m-xylene vapours? Occup. Environ. Med. 2002, 59, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Midzenski, M.A.; McDiarmid, M.A.; Rothman, N.; Kolodner, K. Acute high dose exposure to benzene in shipyard workers. Am. J. Ind. Med. 1992, 22, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Cometto-múiz, J.E.; Cain, W.S. Relative sensitivity of the ocular trigeminal, nasal trigeminal and olfactory systems to airborne chemicals. Chem. Senses 1995, 20, 191–198. [Google Scholar] [CrossRef]
- Ahaghotu, E.; Babu, R.J.; Chatterjee, A.; Singh, M. Effect of methyl substitution of benzene on the percutaneous absorption and skin irritation in hairless rats. Toxicol. Lett. 2005, 159, 261–271. [Google Scholar] [CrossRef]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. The Health Effects of Indoor Air Pollution Exposure in Developing Countries; Geneva World Health Organization Report WHO/SDE/OEH/0205; WHO: Geneva, Switzerland, 2002; pp. 1–40. [Google Scholar]
- Wah, C.; Yu, F.; Kim, T. Building Pathology, Investigation of Sick Buildings—VOC Emissions. Indoor Built Environ. 2010, 19, 30–39. [Google Scholar]
- IARC. Agents Classified by the IARC Monographs, Volumes 1–104; IARC Monographs: Lyon, France, 2012; Volume 7, pp. 1–25. [Google Scholar]
- Marć, M.; Zabiegała, B.; Namieśnik, J. Application of passive sampling technique in monitoring research on quality of atmospheric air in the area of Tczew, Poland. Int. J. Environ. Anal. Chem. 2014, 94, 151–167. [Google Scholar] [CrossRef]
- Bond, G.G.; Mclaren, E.A.; Baldwin, C.L.; Cook, R.R. An update of mortality among chemical workers exposed to benzene. Br. J. Ind. Med. 1986, 43, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Schnatter, A.R.; Glass, D.C.; Tang, G.; Irons, R.D.; Rushton, L. Myelodysplastic Syndrome and Benzene Exposure Among Petroleum Workers: An International Pooled Analysis. J. Natl. Cancer Inst. 2012, 104, 1724–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, T.T.N.; Binh, N.T.T. Daily roadside BTEX concentrations in East Asia measured by the Lanwatsu, Radiello and Ultra I SKS passive samplers. Sci. Total Environ. 2012, 441, 248–257. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, L.M.; Witter, R.Z.; Newman, L.S.; Adgate, J.L. Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci. Total Environ. 2012, 424, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Zabadi, H.; Ferrari, L.; Laurent, A.M.; Tiberguent, A.; Paris, C.; Zmirou-Navier, D. Biomonitoring of complex occupational exposures to carcinogens: The case of sewage workers in Paris. BMC Cancer 2008, 8, 67. [Google Scholar] [CrossRef]
- Chang, E.-E.; Wei-Chi, W.; Li-Xuan, Z.; Hung-Lung, C. Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant. Inhal. Toxicol. 2010, 22 (Suppl. 2), 117–125. [Google Scholar] [CrossRef]
- Lee, C.W.; Dai, Y.T.; Chien, C.H.; Hsu, D.J. Characteristics and health impacts of volatile organic compounds in photocopy centers. Environ. Res. 2006, 100, 139–149. [Google Scholar] [CrossRef]
- Azari, M.R.; Konjin, Z.N.; Zayeri, F.; Salehpour, S. Occupational Exposure of Petroleum Depot Workers to BTEX Compounds. Int. J. Occup. Environ. Med. 2012, 3, 39–44. [Google Scholar]
- Rumchev, K.; Brown, H.; Spickett, J. Volatile Organic Compounds: Do they present a risk to our health? Rev. Environ. Health 2007, 22, 39–55. [Google Scholar] [CrossRef]
- Vitali, M.; Ensabella, F.; Stella, D.; Guidotti, M. Exposure to Organic Solvents among Handicraft Car Painters: A Pilot Study in Italy. Ind. Health 2006, 44, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Moolla, R.; Curtis, C.J.; Knight, J. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa. Sci. Total Environ. 2015, 537, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Annesi-Maesano, I.; Baiz, N.; Banerjee, S.; Rudnai, P.; Rive, S. Indoor air quality and sources in schools and related health effects. J. Toxicol. Environ. Health Part B Crit. Rev. 2013, 16, 491–550. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Gebefugi, I.; Richter, K.; Wolke, G. Indoor and outdoor BTX levels in German cities. Sci. Total Environ. 2001, 267, 41–51. [Google Scholar] [CrossRef]
- Haghighat, F.; Lee, C.S.; Ghaly, W.S. Measurement of diffusion coefficients of VOCs for building materials: Review and development of a calculation procedure. Indoor Air. 2002, 12, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Katsoyiannis, A.; Leva, P.; Kotzias, D. VOC and carbonyl emissions from carpets: A comparative study using four types of environmental chambers. J. Hazard. Mater. 2008, 152, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Katsoyiannis, A.; Leva, P.; Barrero-Moreno, J.; Kotzias, D. Building materials. VOC emissions, diffusion behaviour and implications from their use. Environ. Pollut. 2012, 169, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W.; Weschler, C.J. Cleaning products and air fresheners: Exposure to primary and secondary air pollutants. Atmos. Environ. 2004, 38, 2841–2865. [Google Scholar] [CrossRef]
- Wang, S.; Ang, H.M.; Tade, M.O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ. Int. 2007, 33, 694–705. [Google Scholar] [CrossRef]
- De Bruinen Bruin, Y.; Koistinen, K.; Kephalopoulos, S.; Geiss, O.; Tirendi, S.; Kotzias, D. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: Comparison of measured and modelled exposure data. Environ. Sci. Pollut. Res. 2008, 15, 417–430. [Google Scholar] [CrossRef]
- Moya, J.; Bearer, C.F.; Etzel, R.A. Various Life Stages. Pediatrics 2004, 113. [Google Scholar]
- Aksoy, M.; Dincol, K.; Erdem, S.; Akgun, T.; Dincol, G. Details of blood changes in 32 patients with pancytopenia associated with long-term exposure to benzene. Br. J. Ind. Med. 1972, 29, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, F.Y.B.A.; Maszle, J.J.D.R.; Alexeef, L.Z.G. Original Investigation Population toxicokinetics of tetrachloroethylene. Arch. Toxicol. 1996, 70, 347–355. [Google Scholar]
- Crump, K.S. Risk of benzene-induced leukemia predicted from the pliofilm cohort. Environ. Health Perspect. 1996, 104 (Suppl. 6), 1437–1441. [Google Scholar] [PubMed]
- Paxton, M.B. Leukemia risk associated with benzene exposure in the pliofilm cohort. Environ. Health Perspect. 1996, 104 (Suppl. 6), 1431–1436. [Google Scholar] [PubMed]
- Dutta, C.; Som, D.; Chatterjee, A.; Mukherjee, A.K.; Jana, T.K.; Sen, S. Mixing ratios of carbonyls and BTEX in ambient air of Kolkata, India and their associated health risk. Environ. Monit. Assess. 2009, 148, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, G.; Zhang, Q.; Chen, H. Mass concentrations of BTEX inside air environment of buses in Changsha, China. Build. Environ. 2011, 46, 421–427. [Google Scholar] [CrossRef]
- Pandit, G.G.; Srivastava, P.K.; Mahan Rao, A.M. Monitering of Indoor Volitile Organic Compounds and Polycylic Aromatic Hydrocarbons Arising From Kerosene Cooking Fuel. Sci. Total Environ. 2001, 279, 159–165. [Google Scholar] [CrossRef]
- GroundWork. The Destruction of the Highveld: Digging Coal; GroundWork: Pretoria, South Africa, 2016. [Google Scholar]
- Forouzanfar, M.H.; Alexander, L.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Casey, D.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef]
- Makonese, T.; Masekameni, D.M.; Annegarn, H.J.; Forbes, P.B.C. Influence of fire-ignition methods and stove ventilation rates on gaseous and particle emissions from residential coal braziers. J. Energy S. Afr. 2017, 26, 16–28. [Google Scholar] [CrossRef]
- Makonese, T. Systematic Investigation of Smoke Emissions from Packed-Bed Residential Coal Combustion Devices. Ph.D. Thesis, University of Johannesburg, Johannesburg, South African, 2015. [Google Scholar]
- Masondo, L.; Masekameni, D.; Makonese, T.; Annegarn, H.J.; Mohapi, K. Influence of coal-particle size on emissions using the top-lit updraft ignition method. Clean Air J. 2016, 26, 15–20. [Google Scholar] [CrossRef]
- Le Roux, L.J.; Zunckel, M.; Mccormick, S. Reduction in air pollution using the ‘basa njengo magogo’ method and the applicability to low-smoke fuels. J. Energy S. Afr. 2009, 20, 3–10. [Google Scholar]
- Surridge, A.D.; Asamoah, J.K.; Chauke, G.R.; Grobbelaar, C.J. Strategy to Combat the Negative Impacts of Domestic Coal Combustion Basa Njengo Magogo Methodology Classical Fire-lighting Methodology. Clean Air J. 2004, 14, 13–16. [Google Scholar]
- Karachaliou, T.; Protonotarios, V.; Kaliampakos, D.; Menegaki, M. Using Risk Assessment and Management Approaches to Develop Cost-Effective and Sustainable Mine Waste Management Strategies. Recycling 2016, 1, 328. [Google Scholar] [CrossRef]
- Edokpolo, B.; Yu, Q.J.; Connell, D. Health risk assessment for exposure to benzene in petroleum refinery environments. Int. J. Environ. Res. Public Health 2015, 12, 595–610. [Google Scholar] [CrossRef]
- Durmusoglu, E.; Taspinar, F.; Karademir, A. Health risk assessment of BTEX emissions in the landfill environment. J. Hazard. Mater. 2010, 176, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.N.; Shah, R.; Wong, B.A.; Wong, V.A.; Farris, G.M. Immunotoxicological effects of benzene inhalation in male Sprague-Dawley rats. Toxicology 1997, 119, 227–237. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund (RAGS); Volume, I: Human Health Evaluation Manual (HHEM); Part, E. Supplemental Guidance for Dermal Risk Assessment; USEPA: Washington, DC, USA, 2004; pp. 1–156.
- Makonese, T.; Masekameni, D.M.; Annegarn, H.J. Energy use scenarios in an informal urban settlement in Johannesburg, South Africa. In Proceedings of the 24th Conference Domest Use Energy, Cape Town, South Africa, 30–31 March 2016. [Google Scholar]
- Chikoto, T. Informal Settlements in South Africa; BSC Treatise: Pretoria, South Africa, 2009; pp. 1–55. [Google Scholar]
- Mid-Year Population Estimates 2017. Available online: http://www.statssa.gov.za/publications /P0302/P03022017.pdf (accessed on 10 September 2018).
- Housing Development Agency HAD. Informal Settlements Status; Housing Development Agency HAD: Pretoria, South Africa, 2013; p. 60. [Google Scholar]
- Masih, A.; Lall, A.S.; Taneja, A.; Singhvi, R. Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India. Atmos. Environ. 2016, 147, 55–66. [Google Scholar] [CrossRef]
- Masih, A.; Lall, A.S.; Taneja, A.; Singhvi, R. Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere 2017, 176, 8–17. [Google Scholar] [CrossRef]
- Hosny, G.; Elghayish, M.; Noweir, K. Health risk assessment for benzene-exposure in oil refineries. Int. J. Environ. Sci. Toxicol. Res. 2017, 5, 23–30. [Google Scholar]
- Edokpolo, B.; Yu, Q.J.; Connell, D. Health risk assessment of ambient air concentrations of benzene, toluene and Xylene (BTX) in service station environments. Int. J. Environ. Res. Public Health 2014, 11, 6354–6374. [Google Scholar] [CrossRef]
- Badjagbo, K.; Loranger, S.; Moore, S.; Tardif, R.; Sauvé, S. BTEX exposures among automobile mechanics and painters and their associated health risks. Hum. Ecol. Risk Assess. 2010, 16, 301–316. [Google Scholar] [CrossRef]
- Hazrati, S.; Rostami, R.; Farjaminezhad, M.; Fazlzadeh, M. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmos. Environ. 2016, 132, 91–97. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Benzene; CASRN 71-43-2; Environmental Protection Agency: Washington, DC, USA, 2003; pp. 1–43.
- Environmental Protection Agency. Toluene; CASRN 108-88-3; Environmental Protection Agency: Washington, DC, USA, 2005; Volume 3, pp. 1–33.
- U.S. Environmental Protection Agency. Ethylbenzene; CASRN 100-41-4; Environmental Protection Agency: Washington, DC, USA, 1987; pp. 1–20.
- U.S. Environmental Protection Agency. Xylenes; CASRN 1330-20-7; Environmental Protection Agency: Washington, DC, USA, 2003; pp. 1–32.
- Paustenbach, D.J.; Bass, R.D.; Price, P. Benzene toxicity and risk assessment, 1972–1992: Implications for future regulation. Environ. Health Perspect. 1993, 101 (Suppl. 6), 177–200. [Google Scholar] [CrossRef] [PubMed]
- Tunsaringkarn, T.; Prueksasit, T.; Kitwattanavong, M.; Siriwong, W.; Sematong, S.; Zapuang, K.; Rungsiyothin, A. Cancer risk analysis of benzene, formaldehyde and acetaldehyde on gasoline station workers. J. Environ. Eng. Ecol. Sci. 2012, 11, 1–6. [Google Scholar] [CrossRef]
- Azuma, K.; Uchiyama, I.; Ikeda, K. The risk screening for indoor air pollution chemicals in Japan. Risk Anal. 2007, 27, 1623–1638. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Li, W.M.; Cao, J.J. Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos. Environ. 2003, 37, 73–82. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S.; Godwin, C. VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmos. Environ. 2008, 42, 2083–2100. [Google Scholar] [CrossRef]
- Lee, S.C.; Guo, H.; Li, W.M.; Chan, L.Y. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmos. Environ. 2002, 36, 1929–1940. [Google Scholar] [CrossRef]
- Rao, P.S.; Ansari, M.F.; Gavane, A.G.; Pandit, V.I.; Nema, P.; Devotta, S. Seasonal variation of toxic benzene emissions in petroleum refinery. Environ. Monit. Assess. 2007, 128, 323–328. [Google Scholar] [CrossRef]
- Gariazzo, C.; Pelliccioni, A.; Filippo, P.D.I.; Sallusti, F.; Cecinato, A. Compounds Around an Oil Refinery. Saf. Health 2005, 167, 17–38. [Google Scholar]
- Lin, T.Y.; Sree, U.; Tseng, S.H.; Chiu, K.H.; Wu, C.H.; Lo, J.G. Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmos. Environ. 2004, 38, 4111–4122. [Google Scholar] [CrossRef]
- Moolla, R.; Valsamakis, S.K.; Curtis, C.J.; Piketh, S.J. Occupational health risk assessment of benzene and toluene at a landfill site in Johannesburg, South Africa. WIT Trans. Built Environ. 2013, 134, 701–712. [Google Scholar]
- Keretetse, G.S.; Laubscher, P.J.; Du Plessis, J.L.; Pretorius, P.J.; Van Der Westhuizen, F.H.; Van Deventer, E.; Van Dyk, E.; Eloff, F.C.; Van Aarde, M.N.; Du Plessis, L.H. DNA damage and repair detected by the comet assay in lymphocytes of African petrol attendants: A pilot study. Ann. Occup. Hyg. 2008, 52, 653–662. [Google Scholar] [PubMed]
- Mc Donald, R.; Biswas, P. A methodology to establish the morphology of ambient aerosols. J. Air Waste Manag. Assoc. 2004, 54, 1069–1078. [Google Scholar] [CrossRef]
- World Health Organization. Media Centre fact sheets. Available online: www.who.int/mediacentre/ factsheets/fs292/en/ (accessed on 7 October 2018).
- World Bank. Household Cookstoves, Environment, Health, and Climate Change THE WORLD BANK A NEW LOOK AT AN OLD PROBLEM. Available online: www.documents.worldbank.org/org/curated/en (accessed on 7 October 2018).
- Makonese, T.; Masekameni, D.; Annegarn, H.; Forbes, P.; Pemberton-pigott, C. Domestic Lump-Coal Combustion: Characterization of Performance and Emissions from Selected Braziers; IUAPPA: Cape Town, South Africa, 2012. [Google Scholar]
- Makonese, T.; Masekameni, D.; Annegarn, H.; Forbes, P. Influence of fuel-bed temperatures on CO and condensed matter emissions from packed-bed residential coal combustion. In Proceedings of the 2015 International Conference on Domest Use Energy (DUE), Cape Town, South Africa, 31 March–1 April 2015; pp. 63–69. [Google Scholar]
Parameter | Description | Value | Unit |
---|---|---|---|
C | Room concentration | - | mg/m3 |
IR | Inhalation rate | 20 | m3/day |
BW | Body weight | 70 males/ 60 kg females | kg |
ED | Exposure days | 92 (3 h per day) | Days/year |
YE | Years of exposure | 30 (Residential) | Years |
AT | Years in lifetime | 60 male/67 female | Years |
Chemical | Inhalation Reference Concentration (RfC) | Inhalation Slope Factor (SF) |
---|---|---|
(mg/m3) | (mg/kg/day)−1 | |
Benzene | 0.03 | 0.0273 |
Toluene | 5 | N/A |
Ethylbenzene | 1 | N/A |
O-xylene | 0.1 | N/A |
P-xylene | 0.1 | N/A |
Duration | Benzene | Toluene | P-Xylene | Ethylbenzene | O-Xylene |
---|---|---|---|---|---|
(µg/m3) | (µg/m3) | (µg/m3) | (µg/m3) | (µg/m3) | |
n = 3 | n = 3 | n = 3 | n = 3 | n = 3 | |
15 min | 857 ± 32.40 | 1922 ± 127.5 | 3864 ± 48.33 | 4189 ± 87.11 | 3589 ± 48.74 |
45 min | 958 ± 5.73 | 2137 ± 27.04 | 3831 ± 15.12 | 4257 ± 31.26 | 3510 ± 13.66 |
2 h | 942 ± 13.36 | 2095 ± 36.59 | 3819 ± 9.60 | 4288 ± 91.51 | 3628 ± 9.42 |
3 h Average concentrations | 919 ± 44 | 2051 ± 93 | 3838 ± 19.04 | 4245 ± 41.13 | 3576 ± 49 |
Pollutant | Ignition | Concentration | Contribution |
---|---|---|---|
Stove Ventilation | (µg/m3) n = 3 | % | |
Benzene | TLUD | 919 ± 44 | 6 |
HIGH | |||
Toluene | TLUD | 2051 ± 93 | 14 |
HIGH | |||
P-Xylene | TLUD | 3838 ± 19.04 | 26 |
HIGH | |||
Ethyl benzene | TLUD | 4245 ± 41.13 | 29 |
HIGH | |||
O-Xylene | TLUD | 3576 ± 49 | 25 |
Pollutant | Average concentration | CDIyear | CDI30 year | CDIadj. | CR | HQ | CR/106 | CR/104 |
---|---|---|---|---|---|---|---|---|
µg/m3 | mg/kg/day | mg/kg/day | mg/kg/day | |||||
Benzene | 919 | 0.0097 | 1.06 × 102 | 4.32 × 10−3 | 1.2 × 10−4 | N/A | 120 | 1 |
Toluene | 2051 | 0.0215 | 2.36 × 102 | 9.64 × 10−3 | N/A | 0.001 | N/A | N/A |
P-Xylene | 3838 | 0.0403 | 4.41 × 102 | 1.73 × 10−2 | N/A | 0.050 | N/A | N/A |
Ethylbenzene | 4245 | 0.0446 | 4.88 × 102 | 2.00 × 10−2 | N/A | 0.006 | N/A | N/A |
O-Xylene | 3576 | 0.0376 | 4.11 × 102 | 1.68 × 10−2 | N/A | 0.049 | N/A | N/A |
Pollutant | Average Concentration | CDIyear | CDI30 year | CDIadj. | CR | HQ | CR/1E6 | CR/1E4 |
---|---|---|---|---|---|---|---|---|
µg/m3 | mg/kg/day | mg/kg/day | mg/kg/day | |||||
Benzene | 919 | 0.0083 | 9.06 × 10 | 3.70 × 10−3 | 1.1E × 10−4 | N/A | 110 | 1 |
Toluene | 2051 | 0.0185 | 2.02 × 102 | 8.27 × 10−3 | N/A | <0.001 | N/A | N/A |
P-Xylene | 3838 | 0.0345 | 3.78 × 102 | 1.55 × 10−2 | N/A | 0.045 | N/A | N/A |
Ethyl benzene | 4245 | 0.0382 | 4.18 × 102 | 1.71 × 10−2 | N/A | 0.005 | N/A | N/A |
O-Xylene | 3576 | 0.0322 | 3.52 × 102 | 1.44 × 10−2 | N/A | 0.042 | N/A | N/A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masekameni, M.D.; Moolla, R.; Gulumian, M.; Brouwer, D. Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment. Int. J. Environ. Res. Public Health 2019, 16, 95. https://doi.org/10.3390/ijerph16010095
Masekameni MD, Moolla R, Gulumian M, Brouwer D. Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment. International Journal of Environmental Research and Public Health. 2019; 16(1):95. https://doi.org/10.3390/ijerph16010095
Chicago/Turabian StyleMasekameni, Masilu Daniel, Raeesa Moolla, Mary Gulumian, and Derk Brouwer. 2019. "Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment" International Journal of Environmental Research and Public Health 16, no. 1: 95. https://doi.org/10.3390/ijerph16010095
APA StyleMasekameni, M. D., Moolla, R., Gulumian, M., & Brouwer, D. (2019). Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment. International Journal of Environmental Research and Public Health, 16(1), 95. https://doi.org/10.3390/ijerph16010095