What Has Been the Focus of Sugarcane Research? A Bibliometric Overview
Abstract
:1. Introduction
2. Materials and Methods
Analysis Content
3. Results
3.1. Performance Analysis
3.2. Citation Analysis
3.3. Science Mapping
4. Discussion
4.1. Sugarcane Bagasse
4.2. Ethanol, Biomass, Biofuel, and Bioenergy
4.3. Yield
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 21 August 2019).
- Jorrat, M.D.M.; Araujo, P.Z.; Mele, F.D. Sugarcane water footprint in the province of Tucumán, Argentina. Comparison between different management practices. J. Clean. Prod. 2018, 188, 521–529. [Google Scholar] [CrossRef]
- Sozinho, D.W.F.; Gallardo, A.L.C.F.; Duarte, C.G.; Ramos, H.R.; Ruiz, M.S. Towards strengthening sustainability instruments in the Brazilian sugarcane ethanol sector. J. Clean. Prod. 2018, 182, 437–454. [Google Scholar] [CrossRef]
- Loh, Y.R.; Sujan, D.; Rahman, M.E.; Das, C.A. Review sugarcane bagasse—The future composite material: A literature review. Resour. Conserv. Recycl. 2013, 75, 14–22. [Google Scholar] [CrossRef]
- Waclawovsky, A.J.; Sato, P.M.; Lembke, C.G.; Moore, P.H.; Souza, G.M. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 2010, 8, 263–276. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Cheng, J.J.; Timilsina, G.R. Status and barriers of advanced biofuel technologies: A review. Renew. Energy 2011, 36, 3541–3549. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Bessou, C.; Basset-Mens, C.; Tran, T.; Benoist, A. LCA applied to perennial cropping systems: A review focused on the farm stage. Int. J. Life Cycle Assess. 2013, 18, 340–361. [Google Scholar] [CrossRef]
- Larson, E.D.; Williams, R.H.; Leal, M.R.L.V. A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba. Energy Sustain. Dev. 2001, 5, 54–76. [Google Scholar] [CrossRef]
- Le Gal, P.Y.; Lyne, P.W.L.; Meyer, E.; Soler, L.G. Impact of sugarcane supply scheduling on mill sugar production: A South African case study. Agric. Syst. 2008, 96, 64–74. [Google Scholar] [CrossRef]
- Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Heersmink, R.; van den Hoven, J.; van Eck, N.J.; van Berg, J.D. Bibliometric mapping of computer and information ethics. Ethics Inf. Technol. 2011, 13, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Carley, S.; Rafols, I. Global maps of science based on the new Web-of-Science categories. Scientometrics 2013, 94, 589–593. [Google Scholar] [CrossRef]
- Bezuidenhout, C.N.; Baier, T.J.A. An evaluation of the literature on integrated sugarcane production systems: A scientometrical approach. Outlook Agric. 2011, 40, 79–88. [Google Scholar] [CrossRef]
- Paz Enrique, L.E.; Hernández Alfonso, E.A. Estudio de productividad científica internacional de la temática caña de azúcar relacionada con química aplicada. Tecnol. Quím. 2015, 35, 295–307. [Google Scholar]
- Rajendran, L. Global research contribution on sugarcane (1951–2015): A scientometric study. Res. J. Libr. Sci. 2016, 4, 10–14. [Google Scholar]
- Kalyane, V.L.; Vidyasagar, R.K. Collaboration trends in sugarcane research: A case study. Ann. Libr. Sci. Doc. 1992, 39, 9–11. [Google Scholar]
- Aghaei Chadegani, A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of science and scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Goertzen, M. Multidisciplinary databases outperform specialized and comprehensive databases for agricultural literature coverage. Evid. Based Libr. Inf. Pract. 2019, 14, 140–142. [Google Scholar] [CrossRef]
- Gusenbauer, M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics 2019, 118, 177–214. [Google Scholar] [CrossRef]
- Hasner, C.; Lima, A.A.D.; Winter, E. Technology advances in sugarcane propagation: A patent citation study. World Pat. Inf. 2019, 56, 9–16. [Google Scholar] [CrossRef]
- Sweileh, W.M. Global research trends of World Health Organization’s top eight emerging pathogens. Glob. Health 2017, 13, 9. [Google Scholar] [CrossRef]
- Tang, M.; Liao, H.; Wan, Z.; Herrera-Viedma, E.; Rosen, M. Ten years of Sustainability (2009 to 2018): A bibliometric overview. Sustainability 2018, 10, 1655. [Google Scholar] [CrossRef]
- Centre for Science and Technology Studies. VOSviewer; Leiden University: Leiden, The Netherlands, 2018. [Google Scholar]
- Yeung, A.W.K.; Goto, T.K.; Leung, W.K. The changing landscape of neuroscience research, 2006–2015: A bibliometric study. Front. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef]
- Lovering, J.S. A detailed account of experiments and observations upon the sorghum saccharatum or Chinese sugar cane, made with the view of determining its value as a sugar producing plant, from 28 September to 20 December 1857, at Oakhill, Philadelphia county, Pennsylvania. J. Frankl. Inst. 1858, 65, 125–136. [Google Scholar]
- Goessmann, C.A. XXVIII.—On experiments with fertilizers upon sugar-cane, at calumet plantation, bayou téche, la. J. Am. Chem. Soc. 1879, 1, 416–420. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008, 26, 126–131. [Google Scholar] [CrossRef]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef]
- Sánchez, O.J.; Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270–5295. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Sims, R.E.H.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Waterfield, M.D.; Scrace, G.T.; Whittle, N.; Stroobant, P.; Johnsson, A.; Wasteson, Å.; Westermark, B.; Heldin, C.H.; Huang, J.S.; Deuel, T.F. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 1983, 304, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000, 74, 69–80. [Google Scholar] [CrossRef]
- Clauser, N.M.; Gutiérrez, S.; Area, M.C.; Felissia, F.E.; Vallejos, M.E. Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chem. Eng. Res. Des. 2016, 107, 137–146. [Google Scholar] [CrossRef]
- Contreras-Lisperguer, R.; Batuecas, E.; Mayo, C.; Díaz, R.; Pérez, F.J.; Springer, C. Sustainability assessment of electricity cogeneration from sugarcane bagasse in Jamaica. J. Clean. Prod. 2018, 200, 390–401. [Google Scholar] [CrossRef]
- Pattra, S.; Sangyoka, S.; Boonmee, M.; Reungsang, A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energy 2008, 33, 5256–5265. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Martínez-Ruano, J.A.; Cardona-Alzate, C.A. Energy efficiency of biorefinery schemes using sugarcane bagasse as raw material. Energies 2018, 11, 3747. [Google Scholar] [CrossRef]
- Ambye-Jensen, M.; Balzarotti, R.; Thomsen, S.T.; Fonseca, C.; Kádár, Z. Combined ensiling and hydrothermal processing as efficient pretreatment of sugarcane bagasse for 2G bioethanol production. Biotechnol. Biofuels 2018, 11, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Xu, J.; Yuan, Z.; Jiang, J.; Zhang, Z.; Li, C. Ethanol production from sugarcane bagasse by fed-batch simultaneous saccharification and fermentation at high solids loading. Energy Sci. Eng. 2018, 6, 810–818. [Google Scholar] [CrossRef]
- Sachdeva, P.K.; Chanana, B.; Parmar, M.S. Exploring applications of bagasse fibers in textiles: A review. Colourage 2014, 61, 31–34. [Google Scholar]
- Cestari, S.P.; Albitres, G.A.V.; Mendes, L.C.; Altstädt, V.; Gabriel, J.B.; Avila, G.C.B.; Silveira, I.D.S.D.S. Advanced properties of composites of recycled high-density polyethylene and microfibers of sugarcane bagasse. J. Compos. Mater. 2018, 52, 867–876. [Google Scholar] [CrossRef]
- Cabral, M.R.; Nakanishi, E.Y.; dos Santos, V.; Palacios, J.H.; Godbout, S.; Savastano Junior, H.; Fiorelli, J. Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Arch. Civ. Mech. Eng. 2018, 18, 1092–1102. [Google Scholar] [CrossRef]
- Mansor, S.; Zainuddin, N.I.; Aziz, N.A.; Razali, M.; Joohari, M.I. Sugarcane bagasse fiber-An eco-friendly pavement of SMA. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018. [Google Scholar]
- Wannawilai, S.; Sirisansaneeyakul, S. Economical production of xylitol from candida magnolia TISTR 5663 using sugarcane bagasse hydrolysate. Kasetsart J. Nat. Sci. 2015, 49, 583–596. [Google Scholar]
- Ray, A.K.; Srinivas, K.M.; Gupta, S.; Chattopadhyay, S.; Tiwari, A.K.; Kumar, M. Utilization of sugar industry by-products, the bagasse pith for manufacture of furfural. In Proceedings of the Sustainable Engineering Forum: Core Programming Topic at the 2011 AIChE Annual Meeting, Boston, MA, USA, 16–21 October 2011; pp. 1098–1113. [Google Scholar]
- Farr, A. Bagasse: Properties, Production and Uses; Nova: Annandale, VA, USA, 2018; pp. 1–247. [Google Scholar]
- Parameswaran, B. Sugarcane bagasse. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Berlin, Germany, 2009; pp. 239–252. [Google Scholar]
- Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Moncada, J.A.; Verstegen, J.A.; Posada, J.A.; Junginger, M.; Lukszo, Z.; Faaij, A.; Weijnen, M. Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach. Energy Policy 2018, 123, 619–641. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Guimarães, P.M.R.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Vicente, A.; Domingues, L.; Teixeira, J.A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudorff, B.F.T.; de Aguiar, D.A.; da Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef]
- Oliveira, D.M.S.; Cherubin, M.R.; Franco, A.L.C.; Santos, A.S.; Gelain, J.G.; Dias, N.M.S.; Diniz, T.R.; Almeida, A.N.; Feigl, B.J.; Davies, C.A.; et al. Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil’s bioenergy industry? Renew. Sustain. Energy Rev. 2019, 346–355. [Google Scholar] [CrossRef]
- Brasil, B.S.A.F.; Silva, F.C.P.; Siqueira, F.G. Microalgae biorefineries: The Brazilian scenario in perspective. New Biotechnol. 2017, 39, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.B.S.; Venkatesh, R.D.M.; Sunil, S.; Kakkeri, S. A review on production of ethanol from sugarcane molasses & its usage as fuel. Int. J. Mechan. Eng. Technol. 2018, 9, 7–24. [Google Scholar]
- Go, A.W.; Conag, A.T.; Igdon, R.M.B.; Toledo, A.S.; Malila, J.S. Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context. Energy Strategy Rev. 2019, 23, 100–113. [Google Scholar] [CrossRef]
- Awoyale, A.A.; Lokhat, D. Harnessing the potential of bio-ethanol production from lignocellulosic biomass in Nigeria—A review. Biofuels Bioprod. Biorefin. 2019, 13, 192–207. [Google Scholar] [CrossRef]
- Barrera, I.; Amezcua-Allieri, M.A.; Estupiñan, L.; Martínez, T.; Aburto, J. Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses. Chem. Eng. Res. Des. 2016, 107, 91–101. [Google Scholar] [CrossRef]
- Sriroth, K.; Vanichsriratana, W.; Sunthornvarabhas, J. The current status of sugar industry and by-products in Thailand. Sugar Tech 2016, 18, 576–582. [Google Scholar] [CrossRef]
- Dias, M.O.S.; Junqueira, T.L.; Cavalett, O.; Cunha, M.P.; Jesus, C.D.F.; Rossell, C.E.V.; Maciel Filho, R.; Bonomi, A. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour. Technol. 2012, 103, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, T.L.; Ragauskas, A.J. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod. Biorefin. 2016, 10, 634–647. [Google Scholar] [CrossRef]
- Bastos, R.G. Biofuels from microalgae: Bioethanol. In Green Energy and Technology; Springer: Berlin, Germany, 2018; pp. 229–246. [Google Scholar]
- Teixeira, A.C.R.; Sodré, J.R.; Guarieiro, L.L.N.; Vieira, E.D.; De Medeiros, F.F.; Alves, C.T. A Review on Second and Third Generation Bioethanol Production; SAE Technical Papers; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Bordonal, R.O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N., Jr. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef] [Green Version]
- Benites-Lazaro, L.L.; Giatti, L.; Giarolla, A. Sustainability and governance of sugarcane ethanol companies in Brazil: Topic modeling analysis of CSR reporting. J. Clean. Prod. 2018, 197, 583–591. [Google Scholar] [CrossRef]
- Kamali, F.P.; Borges, J.A.R.; Osseweijer, P.; Posada, J.A. Towards social sustainability: Screening potential social and governance issues for biojet fuel supply chains in Brazil. Renew. Sustain. Energy Rev. 2018, 92, 50–61. [Google Scholar] [CrossRef]
- Ekener, E.; Hansson, J.; Larsson, A.; Peck, P. Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting—Tested on biomass based and fossil transportation fuels. J. Clean. Prod. 2018, 181, 337–351. [Google Scholar] [CrossRef]
- Kalunke, R.M.; Kolge, A.M.; Babu, K.H.; Prasad, D.T. Agrobacterium mediated transformation of sugarcane for borer resistance using Cry 1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech 2009, 11, 355–359. [Google Scholar] [CrossRef]
- Goebel, F.R.; Achadian, E.; McGuire, P. The economic impact of sugarcane Moth Borers in Indonesia. Sugar Tech 2014, 16, 405–410. [Google Scholar] [CrossRef]
- Mukunthan, N.; Singaravelu, B.; Salin, K.P.; Kurup, N.K.; Goud, Y.S. An effective method for evaluating the efficacy of insecticides against sugarcane termites. Sugar Tech 2009, 11, 262–266. [Google Scholar] [CrossRef]
- Singla, N.; Babbar, B.K. Critical timings of rodenticide bait application for controlling rodents in sugarcane crop grown in situations like Punjab, India. Sugar Tech 2012, 14, 76–82. [Google Scholar] [CrossRef]
- Viswanathan, R.; Balamuralikrishnan, M. Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech 2005, 7, 61–65. [Google Scholar] [CrossRef]
- Sharma, S.R.; Gaur, R.K.; Singh, A.; Singh, P.; Rao, G.P. Biological and chemical control of eye leaf spot disease of sugarcane. Sugar Tech 2004, 6, 77–80. [Google Scholar] [CrossRef]
- Senthil, N.; Raguchander, T.; Viswanathan, R.; Samiyappan, R. Talc formulated fluorescent Pseudomonads for sugarcane Red Rot suppression and enhanced yield under field conditions. Sugar Tech 2003, 5, 37–43. [Google Scholar] [CrossRef]
- Sushil, S.N.; Joshi, D.; Tripathi, G.M.; Singh, M.R.; Baitha, A.; Rajak, D.C.; Solomon, S. Exploring efficacious microbial bio-agents and insecticides against white grubs in sugarcane in indo-gangetic plains. Sugar Tech 2018, 20, 552–557. [Google Scholar] [CrossRef]
- Mouret, N.; Martin, P.; Roux, E.; Goebel, F.R. Multi-scale evaluation of the impacts of Beauveria sp. (Ascomycota: Hypocreales) used to control the white frub Hoplochelus marginalis (Fairmaire) (Coleoptera: Scarabaeidae) on sugarcane in Réunion. Sugar Tech 2017, 19, 592–598. [Google Scholar] [CrossRef]
- Cônsoli, F.L.; Botelho, P.S.M.; Parra, J.R.P. Selectivity of insecticides to the egg parasitoid Trichogramma galloi Zucchi, 1988, (Hym. Trichogrammatidae). J. Appl. Entomol. 2001, 125, 37–43. [Google Scholar] [CrossRef]
- Sakaigaichi, T.; Tsuchida, H.; Adachi, K.; Hattori, T.; Tarumoto, Y.; Tanaka, M.; Hayano, M.; Sakagami, J.I.; Irei, S. Phenological changes in the chlorophyll content and its fluorescence in field-grown sugarcane clones under over-wintering conditions. Sugar Tech 2019, 21, 843–846. [Google Scholar] [CrossRef]
- Khonghintaisong, J.; Songsri, P.; Toomsan, B.; Jongrungklang, N. Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech 2018, 20, 396–406. [Google Scholar] [CrossRef]
- Luo, Z.M.; Wang, X.Y.; Huang, Y.K.; Zhang, R.Y.; Li, W.F.; Shan, H.L.; Cang, X.Y.; Li, J.; Yin, J. Field resistance of different sugarcane varieties to sugarcane thrips (Fulmekiola serratus) in China. Sugar Tech 2018, 21, 527–531. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yamamura, M.; Tobimatsu, Y.; Suzuki, S.; Kojima, M.; Takabe, K.; Terajima, Y.; Mihashi, A.; Kobayashi, Y.; Umezawa, T. A comparative study of the biomass properties of Erianthus and sugarcane: Lignocellulose structure, alkaline delignification rate, and enzymatic saccharification efficiency. Biosci. Biotechnol. Biochem. 2018, 82, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Huang, Y.; Luo, L.; Li, X.; Wu, J.; Chen, R.; Zhang, M.; Deng, Z. An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex). BMC Plant Biol. 2018, 18, 269. [Google Scholar] [CrossRef]
- Thirugnanasambandam, P.P.; Hoang, N.V.; Henry, R.J. The challenge of analyzing the sugarcane genome. Front. Plant Sci. 2018, 9, 616. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.C.; Wei, L.P.; Huang, C.M.; Wei, Y.W.; Cao, H.Q.; Xu, L.; Luo, H.B.; Jiang, S.L.; Deng, Z.N.; Li, Y.R. transcriptome reveals differentially expressed genes in Saccharum spontaneum GX83-10 leaf under drought stress. Sugar Tech 2018, 20, 756–764. [Google Scholar] [CrossRef]
- Hoang, N.V.; Furtado, A.; Botha, F.C.; Simmons, B.A.; Henry, R.J. Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front. Bioeng. Biotechnol. 2015, 3, 182. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.K.; Gosal, S.S.; Thind, K.S.; Uppal, S.K.; Sharma, B.; Meeta, M.; Singh, K.; Cheema, G.S. Field performance of micropropagated plants and potential of seed cane for stalk yield and quality in sugarcane. Sugar Tech 2009, 11, 34–38. [Google Scholar] [CrossRef]
- Yadav, P.V.; Suprasanna, P.; Gopalrao, K.U.; Anant, B.V. Molecular profiling using RAPD technique of salt and drought tolerant regenerants of sugarcane. Sugar Tech 2006, 8, 63–68. [Google Scholar] [CrossRef]
- Arruda, P. Genetically modified sugarcane for bioenergy generation. Curr. Opin. Biotechnol. 2012, 23, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, K.S.; Rossetto, R.; Vitti, A.C.; Montezano, Z.F.; Soares, J.R.; Sousa, R.D.M.; do Carmo, J.B.; Kuramae, E.E.; Cantarella, H. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Sci. Total Environ. 2019, 650, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Franco, H.C.J.; Otto, R.; Faroni, C.E.; Vitti, A.C.; Almeida de Oliveira, E.C.; Trivelin, P.C.O. Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Res. 2011, 121, 29–41. [Google Scholar] [CrossRef]
- Masters, B.; Rohde, K.; Gurner, N.; Reid, D. Reducing the risk of herbicide runoff in sugarcane farming through controlled traffic and early-banded application. Agric. Ecosyst. Environ. 2013, 180, 29–39. [Google Scholar] [CrossRef]
- Asafu-Adjaye, J. Factors affecting the adoption of soil conservation measures: A case study of fijian cane farmers. J. Agric. Resour. Econ. 2008, 33, 99–117. [Google Scholar]
- Singh, I.; Verma, R.R.; Srivastava, T.K. Growth, yield, irrigation water use efficiency, juice quality and economics of sugarcane in pusa hydrogel application under different irrigation scheduling. Sugar Tech 2018, 20, 29–35. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Quabba, R.P. Opportunities for improving the management of sugarcane production through the adoption of precision agriculture—An Australian perspective. Int. Sugar J. 2002, 104, 152–161. [Google Scholar]
- Abdel-Rahman, E.M.; Ahmed, F.B. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. Int. J. Remote Sens. 2008, 29, 3753–3767. [Google Scholar] [CrossRef]
- Fortes, C.; Trivelin, P.C.O.; Vitti, A.C.; Ferreira, D.A.; Franco, H.C.J.; Otto, R. Recovery of nitrogen (15N) by sugarcane from previous crop residues and urea fertilisation under a minimum tillage system. Sugar Tech 2011, 13, 42–46. [Google Scholar] [CrossRef]
Rank | Journal | TPs | Country/Region | TPs | Institute | TPs |
---|---|---|---|---|---|---|
1 | Sugar Tech | 892 | Brazil | 8444 | Universidade de Sao Paulo—USP | 2420 |
2 | International Sugar Journal | 650 | United States | 4189 | UNESP-Universidade Estadual Paulista | 1393 |
3 | Bioresource Technology | 553 | India | 4113 | Universidade Estadual de Campinas | 1119 |
4 | Revista Brasileira de Zootecnia | 246 | Australia | 2458 | Sugar Research Australia | 665 |
5 | Biomass and Bioenergy | 212 | China | 2086 | Empresa Brasileira de Pesquisa Agropecuaria—Embrapa | 530 |
6 | Industrial Crops and Products | 199 | South Africa | 923 | University of Florida | 500 |
7 | Pesquisa Agropecuaria Brasileira | 168 | United Kingdom | 895 | USDA Agricultural Research Service, Washington DC | 482 |
8 | Plos One | 157 | Japan | 853 | Universidade Federal de Sao Carlos | 474 |
9 | Applied Biochemistry and Biotechnology | 151 | France | 782 | Universidade Federal de Vicosa | 468 |
10 | Cuban Journal of Agricultural Science | 148 | Mexico | 737 | University of Queensland | 438 |
Rank | Authors (Year) | Title | Source Title | Cited by |
---|---|---|---|---|
1 | Brennan and Owende [30] (2010) | Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products | Renewable and Sustainable Energy Reviews | 2271 |
2 | Paterson et al. [32] (2009) | The Sorghum bicolor genome and the diversification of grasses | Nature | 1657 |
3 | Chisti [31] (2008) | Biodiesel from microalgae beats bioethanol | Trends in Biotechnology | 1260 |
4 | Saha [34] (2003) | Hemicellulose bioconversion | Journal of Industrial Microbiology and Biotechnology | 1200 |
5 | Kim and Dale [38] (2004) | Global potential bioethanol production from wasted crops and crop residues | Biomass and Bioenergy | 1144 |
6 | Wan Ngah and Hanafiah [36] (2008) | Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review | Bioresource Technology | 1116 |
7 | Sánchez and Cardona [33] (2008) | Trends in biotechnological production of fuel ethanol from different feedstocks | Bioresource Technology | 1068 |
8 | Waterfield et al. [37] (1983) | Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus | Nature | 994 |
9 | Balat and Balat [39] (2009) | Recent trends in global production and utilization of bio-ethanol fuel | Applied Energy | 830 |
10 | Sims, Mabee, Saddler and Taylor [35] (2010) | An overview of second generation biofuel technologies | Bioresource Technology | 808 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Rodríguez, K.A.; Hernández-Rosas, F.; Figueroa-Sandoval, B.; Velasco-Velasco, J.; Aguilar Rivera, N. What Has Been the Focus of Sugarcane Research? A Bibliometric Overview. Int. J. Environ. Res. Public Health 2019, 16, 3326. https://doi.org/10.3390/ijerph16183326
Figueroa-Rodríguez KA, Hernández-Rosas F, Figueroa-Sandoval B, Velasco-Velasco J, Aguilar Rivera N. What Has Been the Focus of Sugarcane Research? A Bibliometric Overview. International Journal of Environmental Research and Public Health. 2019; 16(18):3326. https://doi.org/10.3390/ijerph16183326
Chicago/Turabian StyleFigueroa-Rodríguez, Katia A., Francisco Hernández-Rosas, Benjamín Figueroa-Sandoval, Joel Velasco-Velasco, and Noé Aguilar Rivera. 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview" International Journal of Environmental Research and Public Health 16, no. 18: 3326. https://doi.org/10.3390/ijerph16183326
APA StyleFigueroa-Rodríguez, K. A., Hernández-Rosas, F., Figueroa-Sandoval, B., Velasco-Velasco, J., & Aguilar Rivera, N. (2019). What Has Been the Focus of Sugarcane Research? A Bibliometric Overview. International Journal of Environmental Research and Public Health, 16(18), 3326. https://doi.org/10.3390/ijerph16183326