Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Climate, and Soil
2.2. Experimental Design, Fertilization, and Soil Disinfection
2.3. Parameters Analyzed
2.3.1. Tomato Yield
2.3.2. Fruit Quality
2.4. Statistical Analyses
3. Results
3.1. Tomato Yield
3.1.1. Accumulated Tomato Yield
3.1.2. Yield per Harvest
3.1.3. Weight per Fruit
3.2. Fruit Quality
3.2.1. Size
3.2.2. Firmness
3.2.3. Soluble Solids
3.2.4. Acidity of the Fruit
3.2.5. Color
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castilla, N. Greenhouse Technology and Management, 2nd ed.; CABI: Wallingford, UK, 2013; pp. 1–335. ISBN 9781780641034. Available online: https://www.cabi.org/bookshop/book/9781780641034 (accessed on 9 November 2018).
- Cabrera, A.; Uclés, D.; Aguera, T.; de la Cruz, E. Análisis de la campaña hortofrutícola de Almería: Campaña 2016/2017. Editorial Fundación Cajamar 2017, 1, 1–59. Available online: http://www.publicacionescajamar.es/series-tematicas/informes-coyuntura-analisis-de-campana/analisis-de-la-campana-hortofruticola-de-Almería-campana-2016-2017/ (accessed on 9 November 2018).
- Lamichhane, J.R. Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop Prot. 2017, 97, 1–6. Available online: https://www.sciencedirect.com/science/article/pii/S0261219417300261 (accessed on 9 November 2018). [CrossRef]
- Ramos, C.; Agut, A.; Lidón, A.L. Nitrate leaching in important crops of the Valencian Community region (Spain). Environ. Pollut. 2002, 118, 215–223. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11939284 (accessed on 9 November 2018). [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. Available online: https://www.sciencedirect.com/science/article/pii/S0167880905003816 (accessed on 9 November 2018). [CrossRef]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. Available online: https://www.sciencedirect.com/science/article/pii/S0378377407000376?via%3Dihub (accessed on 9 November 2018). [CrossRef]
- Yasuor, H.; Ben-Gal, A.; Yermiyahu, U.; Beit-Yannai, E.; Cohen, S. Nitrogen management of greenhouse pepper production: Agronomic, nutritional, and environmental implications. HortScience 2013, 48, 1241–1249. Available online: http://hortsci.ashspublications.org/content/48/10/1241.full (accessed on 9 November 2018).
- Junta de Andalucía. Estrategia de gestión de restos vegetales en la horticultura de Andalucía. Consejería de Agricultura y Pesca y Desarrollo Rural; Consejería de Medio Ambiente y Ordenación del Territorio 2016, 1, 1–45. Available online: https://www.juntadeandalucia.es/export/drupaljda/Lineas_actuacion_materia_gestion_restos_vegetales_horticultura_Andalucia.pdf (accessed on 9 November 2018).
- López-Hernández, J.C.; Pérez-Martínez, C.; Acien-Fernández, F.G. Residuos vegetales procedentes de los invernaderos de Almería. Publicaciones Cajamar 2016, 17, 1–9. Available online: https://www.cajamar.es/pdf/bd/agroalimentario/innovacion/formacion/actividades-de-transferencia/017-restos-vegetales-1466406472.pdf (accessed on 9 November 2018).
- Kumar, V.; Abdul-Baki, A.; Anderson, J.D.; Mattoo, A.K. Cover crop residues enhance growth, improve yield, and delay leaf senescence in greenhouse-grown tomatoes. HortScience 2005, 40, 1307–1311. Available online: http://hortsci.ashspublications.org/content/40/5/1307.abstract (accessed on 9 November 2018).
- Marín-Guirao, J.I.; Tello, J.C.; Díaz, M.; Boix, A.; Ruiz, C.A.; Camacho, F. Effect of greenhouse soil bio-disinfection on soil nitrate content and tomato fruit yield and quality. Soil Res. 2016, 54, 200–206. Available online: http://www.publish.csiro.au/SR/SR15106 (accessed on 9 November 2018). [CrossRef]
- Bello Pérez, A.; González-Pérez, J.A.; Tello, J.C. La biofumigación como alternativa a la desinfección de suelos. Hortic. Int. 1997, 43, 41–43. Available online: http://digital.csic.es/bitstream/10261/84815/1/La%20biofumigaci%C3%B3n%20como%20alternativa.pdf (accessed on 9 November 2018).
- Kirkegaard, J.A.; Gardner, P.A.; Desmarchelier, J.M.; Angus, J.F. Biofumigation-using Brassica species to control pests and diseases in horticulture and agriculture. In Proceedings of the 9th Australian Research Assembly on Brassica, Wagga Wagga, Australia, 5–7 October 1993; Volume 1, pp. 77–82. Available online: https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:1ab24273-efdb-43d2-a034-071ccfa128c4 (accessed on 9 November 2018).
- Katan, J. Solar heating (solarization) of soil for control of soilborne pests. Annu. Rev. Phytopathol. 1981, 19, 211–236. Available online: https://www.annualreviews.org/doi/abs/10.1146/annurev.py.19.090181.001235 (accessed on 9 November 2018). [CrossRef]
- Scopa, A.; Candido, V.; Dumontet, S.; Miccolis, V. Greenhouse solarization: Effects on soil microbiological parameters and agronomic aspects. Sci. Hortic. 2008, 116, 98–103. Available online: https://www.sciencedirect.com/science/article/pii/S0304423807004037 (accessed on 9 November 2018). [CrossRef]
- Mauromicale, G.; Longo, A.M.G.; Lo Monaco, A. The effect of organic supplementation of solarized soil on the quality of tomato fruit. Sci. Hortic. 2011, 129, 189–196. Available online: https://www.sciencedirect.com/science/article/pii/S0304423811001324 (accessed on 9 November 2018). [CrossRef]
- Chan, K.Y.; Heenan, D.P. The influence of crop rotation on soil structure and soil physical properties under conventional tillage. Soil Tillage Res. 1996, 37, 113–125. Available online: https://www.sciencedirect.com/science/article/pii/0167198796010082 (accessed on 9 November 2018). [CrossRef]
- McGuire, A.M. Mustard Green Manures Replace Fumigant and Improve Infiltration in Potato Cropping System. Crop Manag. 2003, 2, 1–6. Available online: https://dl.sciencesocieties.org/publications/cm/abstracts/2/1/2003-0822-01-RS (accessed on 9 November 2018). [CrossRef]
- Bailey, K.L.; Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments. Soil Till. Res. 2003, 72, 169–180. Available online: https://www.sciencedirect.com/science/article/pii/S0167198703000862 (accessed on 9 November 2018). [CrossRef]
- Thorup-Kristensen, K.; Magid, J.; Jensen, L.S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 2003, 79, 227–302. Available online: http://www.orgprints.org/107/ (accessed on 9 November 2018). [CrossRef]
- Stapleton, J.J.; Quick, J.; Devay, J.E. Soil solarization—Effects on soil properties, crop fertilization and plant-growth. Soil Biol. Biochem. 1985, 17, 369–373. Available online: https://www.sciencedirect.com/science/article/abs/pii/0038071785900756 (accessed on 9 November 2018). [CrossRef]
- Lazzeri, L.; Malaguti, L.; Cinti, S.; Ugolini, L.; De Nicola, G.R.; Bagatta, M.; Casadei, N.; D’Avino, L.; Matteo, R.; Patalano, G. The brassicaceae biofumigation system for plant cultivation and defence. An italian twenty-year experience of study and application. Acta Hortic. 2013, 1005, 375–382. Available online: https://www.actahort.org/books/1005/1005_44.htm (accessed on 9 November 2018). [CrossRef]
- Reddy, P.P. Biofumigation and Solarization for Management of Soil-Borne Plant Pathogens, 1st ed.; Scientific Publishers: Jodhpur, India, 2011; pp. 1–431. ISBN 9788172336974. Available online: http://www.scientificpub.com/book-details/Biofumigation-and-Solarization-for-Management-of-Soil-Borne-Plant-Pathogens-151.html (accessed on 9 November 2018).
- Willer, H.; Lernoud, J. The World of Organic Agriculture. Statistics and Emerging Trends; Research Institute of Organic Agriculture FiBL and IFOAM Organics International: Frick, Switzerland, 2016; Available online: https://shop.fibl.org/CHde/mwdownloads/download/link/id/785/?ref=1 (accessed on 9 November 2018).
- Valera, D.L.; Belmonte, L.J.; Molina-Aiz, F.D.; López, A.; Camacho, F. The greenhouses of Almería, Spain: Technological analysis and profitability. Acta Hortic. 2017, 1170, 219–226. Available online: https://www.actahort.org/books/1170/1170_25.htm (accessed on 9 November 2018). [CrossRef]
- Bretones, C. El enarenado. In Técnicas de Producción en Cultivos Protegidos, 1st ed.; Instituto Cajamar: Madrid, España, 2003; Volume 1, pp. 110–118. ISBN 84-95531-15-1. Available online: http://www.publicacionescajamar.es/pdf/series-tematicas/agricultura/tecnicas-de-produccion-en-cultivos-2.pdf (accessed on 9 November 2018).
- Contreras París, J.; Baeza Cano, R.J.; Segura Pérez, M. Cuantificación de los nutrientes aportados al suelo por la incorporación de los restos de los cultivos hortícolas en invernaderos. Agricultura y ganadería ecológica 2015, 11, 18–19. Available online: https://www.agroecologia.net/recursos/publicaciones/actas/cd-actas-xicongresoseae/actas/comunicaciones/67-cuantificacion-nutrientes-contreras-resumen.pdf (accessed on 9 November 2018).
- Moreno Casco, J.; Moral Herrero, R. Compostaje, 1st ed.; Mundi-Prensa: Madrid, España, 2008; pp. 1–572. ISBN 9788484763468. Available online: https://www.mundiprensa.com/catalogo/9788484763468/compostaje (accessed on 9 November 2018).
- Casas Castro, A.; Casas Barba, E. Análisis de suelo-agua-planta y su aplicación en la nutrición de los cultivos hortícolas en la zona del sureste peninsular. Publicaciones Cajamar 1999, 1, 1–249. Available online: http://www.publicacionescajamar.es/series-tematicas/agricultura/analisis-de-suelo-agua-planta-y-su-aplicacion-en-la-nutricion-de-cultivos-horticolas-en-la-zona-peninsular/ (accessed on 9 November 2018).
- Fernández, P.; Pascual, J.; Lacasa, A. Potencial de lixiviación de nitratos de la técnica de biosolarización en suelos de invernaderos de pimiento. Sociedad Española de Ciencias de Hortícolas 2014, 66, 107–115. Available online: http://www.sech.info/ACTAS/Acta%20n%C2%BA%2066.%20V%20Jornadas%20del%20grupo%20de%20fertilizaci%C3%B3n/Sesi%C3%B3n%201.%20Cultivos%20Hort%C3%ADcolas/Potencial%20de%20lixiviaci%C3%B3n%20de%20nitratos%20de%20la%20t%C3%A9cnica%20de%20biosolarizaci%C3%B3n%20en%20suelos%20de%20invernaderos%20de%20pimiento.pdf (accessed on 9 November 2018).
- Chen, Y.; Katan, J.; Gamliel, A.; Aviad, T.; Schnitzer, M. Involvement of soluble organic matter in increased plant growth in solarized soils. Biol. Fertil. Soils 2000, 32, 28–34. Available online: https://link.springer.com/article/10.1007/s003740000209 (accessed on 9 November 2018). [CrossRef]
- Guerrero, M.M.; Martínez, M.A.; Ros, C.; Martínez, M.C.; Bello, A.; Lacasa, A. Biosolarización y biofumigación para la producción de pimiento ecológico en invernadero. Sociedad Española de Agricultura Ecológica 2006, 103, 1–8. Available online: https://www.agroecologia.net/recursos/publicaciones/publicaciones-online/2006/CD%20Congreso%20Zaragoza/Ponencias/103%20Guerrero%20Com-%20Biosolarizaci%C3%B3n.pdf (accessed on 9 November 2018).
- Martínez, M.A.; Guerrero, M.M.; Martínez, M.C.; Ros, C.; Lacasa, A.; Tello, J.C. Efecto de la biosolarización reiterada sobre la microbiota fúngica en cultivos de pimiento. Sociedad Española de Agricultura Ecológica 2006, 212, 1–10. Available online: https://www.agroecologia.net/recursos/publicaciones/publicaciones-online/2006/CD%20Congreso%20Zaragoza/Ponencias/212%20Martinez%20Com-%20Efecto.pdf (accessed on 9 November 2018).
- Díez-Rojo, M.; López-Pérez, J.; Urbano-Terrón, P.; Bello, A. Biodesinfección de Suelos y Manejo Agronómico; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, España, 2010; 407p, Available online: https://www.miteco.gob.es/va/calidad-y-evaluacion-ambiental/publicaciones/libro%20de%20biodesinfecci%C3%B3n_tcm39-185072.pdf (accessed on 9 November 2018).
- Fernández-Bayo, J.D.; Achmon, Y.; Harrold, D.R.; McCurry, D.G.; Hernandez, K.; Dahlquist-Willard, R.M.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy. J. Agric. Food Chem. 2017, 65, 3434–3442. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28409935 (accessed on 9 November 2018). [CrossRef]
- Iapichino, G.; Puleo, L.; Vetrano, F.; Sciortino, A. Effects of Solarization and Biofumigation on Tomato Greenhouse Production in the Southern Coast of Sicily. Acta Hortic. 2008, 801, 1557–1562. Available online: https://www.actahort.org/books/801/801_192.htm (accessed on 9 November 2018). [CrossRef]
- Porras, M.; Barrau, C.; Romero, E.; Zurera, C.; Romero, F. Effect of Biofumigation with Brassica carinata and Soil Solarization on Phytophthora spp. and Strawberry Yield. Acta Hortic. 2008, 842, 969–972. Available online: https://www.actahort.org/books/842/842_215.htm (accessed on 9 November 2018). [CrossRef]
- Garibaldi, A.; Gilardi, G.; Clematis, F.; Gullino, M.L.; Lazzeri, L.; Malaguti, L. Effect of Green Brassica Manure and Brassica Defatted Seed Meals in Combination with Grafting and Soil Solarization against Verticillium Wilt of Eggplant and Fusarium Wilt of Lettuce and Basil. Acta Hortic. 2010, 883, 295–302. Available online: https://www.actahort.org/books/883/883_36.htm (accessed on 9 November 2018). [CrossRef]
- Lombardo, S.; Longo, A.M.G.; Lo Monaco, A.; Mauromicale, G. The effect of soil solarization and fumigation on pests and yields in greenhouse tomatoes. Crop Prot. 2012, 37, 59–64. Available online: https://www.sciencedirect.com/science/article/pii/S0261219412000373 (accessed on 9 November 2018). [CrossRef]
- Hansen, Z.R.; Keinath, A.P. Increased pepper yields following incorporation of biofumigation cover crops and the effects on soilborne pathogen populations and pepper diseases. Appl. Soil Ecol. 2013, 63, 67–77. Available online: https://www.sciencedirect.com/science/article/pii/S0929139312002302 (accessed on 9 November 2018). [CrossRef]
- Suja, G.; Byju, G.; Jyothi, A.N.; Veena, S.S.; Sreekumar, J. Yield, quality and soil health under organic vs conventional farming in taro. Sci. Hortic. 2017, 218, 334–343. Available online: https://www.sciencedirect.com/science/article/pii/S0304423817300912 (accessed on 9 November 2018). [CrossRef]
- Achmon, Y.; Sade, N.; Wilhelmi, M.; Fernandez-Bayo, J.D.; Harrold, D.R.; Stapleton, J.J.; VanderGheynst, J.S. Effects of Short-Term Biosolarization Using Mature Compost and Industrial Tomato Waste Amendments on the Generation and Persistence of Biocidal Soil Conditions and Subsequent Tomato Growth. J. Agric. Food Chem. 2018, 66, 5451–5461. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29763301 (accessed on 9 November 2018). [CrossRef] [PubMed]
- Ros, M.; Garcia, C.; Hernandez, M.T.; Lacasa, A.; Fernandez, P.; Pascual, J.A. Effects of biosolarization as methyl bromide alternative for Meloidogyne incognita control on quality of soil under pepper. Biol. Fertil. Soils 2008, 45, 37. Available online: https://link.springer.com/article/10.1007/s00374-008-0307-1 (accessed on 9 November 2018). [CrossRef]
- Mauromicale, G.; Monaco, A.L.; Longo, A.M.G. Improved efficiency of soil solarization for growth and yield of greenhouse tomatoes. Agron. Sustain. Dev. 2010, 30, 753–761. Available online: https://link.springer.com/article/10.1051/agro/2010015 (accessed on 9 November 2018). [CrossRef]
- Nuñez-Zofío, M.; Larregla del Palacio, S.; Garbisu, C. Repeated biodisinfection controls the incidence of Phytophthora root and crown rot of pepper while improving soil quality. Spanish J. Agric. Res. 2012, 10, 794–805. Available online: http://revistas.inia.es/index.php/sjar/article/view/2342 (accessed on 9 November 2018). [CrossRef]
- López-Aranda, J.M.; Miranda, L.; Domínguez, P.; Soria, C.; Pérez-Jiménez, R.M.; Zea, T.; Talavera, M.; Velasco, L.; Romero, F.; De Los Santos, B. Soil biosolarization for strawberry cultivation. Acta Hortic. 2012, 926, 407–413. Available online: https://www.actahort.org/books/926/926_57.htm (accessed on 9 November 2018). [CrossRef]
- Pane, C.; Villecco, D.; Pentangelo, A.; Lahoz, E.; Zaccardelli, M. Integration of soil solarization with Brassica carinata seed meals amendment in a greenhouse lettuce production system. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 291–299. Available online: https://www.tandfonline.com/doi/abs/10.1080/09064710.2011.613850 (accessed on 9 November 2018). [CrossRef]
- Guerrero, M.; Lacasa, C.; Ros, C.; Martínez, V.; Fenoll, J.; Torres, J.; Beltrán, C.; Fernández, P.; Bello, A.; Lacasa, A. Pellets de brasicas como enmiendas para biosolarización de invernaderos de pimiento. XII Congreso Nacional de Ciencias Hortícolas 2009, 1, 1–6. Available online: http://www.sech.info/ACTAS/Acta%20n%C2%BA%2054.%20VI%20Congreso%20Ib%C3%A9rico%20de%20Ciencias%20Hort%C3%ADcolas.%20XII%20Congreso%20Nacional%20de%20Ciencias%20Hort%C3%ADcolas/Comunicaciones/Pellets%20de%20brasicas%20como%20enmiendas%20para%20biosolarizaci%C3%B3n%20de%20invernaderos%20de%20pimiento.pdf (accessed on 9 November 2018).
- Domene Ruiz, M.A.; Segura Rodriguez, M. Parámetros de calidad externa en la industria agroalimentaria. Publicaciones Cajamar 2014, 1, 1–12. Available online: https://www.cajamar.es/pdf/bd/agroalimentario/innovacion/investigacion/documentos-y-programas/003-calidad-externa-1401191044.pdf (accessed on 9 November 2018).
- Domene Ruiz, M.A.; Segura Rodriguez, M. Parámetros de calidad interna en la industria agroalimentaria. Publicaciones Cajamar 2014, 1, 1–18. Available online: https://www.cajamar.es/pdf/bd/agroalimentario/innovacion/investigacion/documentos-y-programas/005-calidad-interna-1410512030.pdf (accessed on 9 November 2018).
Nutritive Solution | NO3−: 11 mmol·L−1, H2PO4−: 1.5 mmol·L−1, SO42−: 2 mmol·L−1, K+: 7.5 mmol·L−1, Ca2+: 5 mmol·L−1, Mg2+: 2 mmol·L−1. |
E.C. increased from 0.5 to 3.0 dS·m−1 during crop development. | |
Biofence® | Dehydrated and defatted pellets of Brassica carinata, 6% N, 3.1% P, 2.2% K, 1.8% S, 0.5% Mg. Triumph Italia. |
Treatment | Mean Yield (kg·m−2) | Fruit Weight (g) | Size (mm) | Firmness (kg·cm−2) | Soluble Solids (°Brix) | Fruit Acidity (pH) | Fruit Color (A*/B*) |
---|---|---|---|---|---|---|---|
Season 1. 2015–2016 (173 days) | |||||||
Control | 0.70 ± 0.10 | 118.22 ± 10.06 C | 61.28 ± 3.09 C | 5.70 ± 0.76 A | 5.31 ± 0.51 A | 3.95 ± 0.12 C | 0.69 ± 0.10 C |
Rest | 0.82 ± 0.11 | 123.34 ± 10.46 BC | 63.02 ± 2.19 B | 4.74 ± 0.68 B | 5.27 ± 0.49 A | 4.03 ± 0.16 B | 0.73 ± 0.10 B |
Rest + | 0.83 ± 0.09 | 124.83 ± 9.97 BC | 63.31 ± 2.58 B | 4.45 ± 0.71 CD | 5.01 ± 0.58 B | 4.06 ± 0.14 AB | 0.73 ± 0.10 AB |
Rest ++ | 0.83 ± 0.12 | 129.97 ± 7.01 AB | 63.73 ± 2.44 B | 4.45 ± 0.64 CD | 5.17 ± 0.42 A | 4.06 ± 0.16 AB | 0.73 ± 0.11 AB |
Fert | 0.77 ± 0.08 | 127.35 ± 10.22 ABC | 64.68 ± 2.50 A | 4.43 ± 0.65 D | 4.78 ± 0.58 C | 4.09 ± 0.15 A | 0.73 ± 0.08 B |
Fert + | 0.85 ± 0.08 | 136.16 ± 10.28 A | 65.22 ± 2.17 A | 4.69 ± 0.65 BC | 4.65 ± 0.44 C | 4.03 ± 0.15 B | 0.75 ± 0.09 A |
Fert ++ | 0.83 ± 0.10 | 137.13 ± 3.93 A | 65.38 ± 2.70 A | 4.64 ± 0.59 BCD | 4.67 ± 0.42 C | 4.01 ± 0.16 B | 0.74 ± 0.11 AB |
p-value | 0.6770 | 0.0016 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Season 2. 2016–2017 (170 days) | |||||||
Control | 0.52 ± 0.07 C | 106.45 ± 6.71 D | 60.57 ± 3.28 D | 5.65 ± 0.90 B | 5.38 ± 0.55 B | 4.12 ± 0.14 | 0.45 ± 0.11 D |
Rest | 0.70 ± 0.15 B | 120.77 ± 12.25 C | 63.97 ± 3.32 BC | 5.70 ± 1.00 B | 5.34 ± 0.59 B | 4.13 ± 0.23 | 0.51 ± 0.11 C |
Rest + | 0.73 ± 0.13 AB | 122.85 ± 11.24 BC | 64.56 ± 3.26 B | 5.56 ± 0.91 B | 5.21 ± 0.60 BC | 4.13 ± 0.11 | 0.51 ± 0.10 C |
Rest ++ | 0.74 ± 0.12 AB | 126.32 ± 11.50 ABC | 64.07 ± 3.06 BC | 5.63 ± 0.96 B | 5.27 ± 0.55 BC | 4.11 ± 0.10 | 0.52 ± 0.10 BC |
Fert | 0.81 ± 0.12 A | 132.03 ± 5.68 A | 65.64 ± 2.45 A | 5.18 ± 0.89 C | 5.10 ± 0.48 C | 4.21 ± 0.27 | 0.53 ± 0.11 AB |
Fert + | 0.79 ± 0.12 AB | 127.01 ± 6.53 AB | 64.81 ± 2.84 AB | 5.59 ± 0.98 B | 5.28 ± 0.49 B | 4.16 ± 0.12 | 0.52 ± 0.11 BC |
Fert ++ | 0.82 ± 0.13 A | 124.63 ± 7.42 BC | 63.60 ± 2.82 C | 6.05 ± 0.96 A | 5.63 ± 0.51 A | 4.16 ± 0.23 | 0.55 ± 0.11 A |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0555 | 0.0000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Raya, P.; Ruiz-Olmos, C.; Marín-Guirao, J.I.; Asensio-Grima, C.; Tello-Marquina, J.C.; de Cara-García, M. Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops. Int. J. Environ. Res. Public Health 2019, 16, 279. https://doi.org/10.3390/ijerph16020279
García-Raya P, Ruiz-Olmos C, Marín-Guirao JI, Asensio-Grima C, Tello-Marquina JC, de Cara-García M. Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops. International Journal of Environmental Research and Public Health. 2019; 16(2):279. https://doi.org/10.3390/ijerph16020279
Chicago/Turabian StyleGarcía-Raya, Pablo, César Ruiz-Olmos, José Ignacio Marín-Guirao, Carlos Asensio-Grima, Julio César Tello-Marquina, and Miguel de Cara-García. 2019. "Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops" International Journal of Environmental Research and Public Health 16, no. 2: 279. https://doi.org/10.3390/ijerph16020279
APA StyleGarcía-Raya, P., Ruiz-Olmos, C., Marín-Guirao, J. I., Asensio-Grima, C., Tello-Marquina, J. C., & de Cara-García, M. (2019). Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops. International Journal of Environmental Research and Public Health, 16(2), 279. https://doi.org/10.3390/ijerph16020279