Bisphenol S Adsorption Behavior on Ferralsol and Biochar Modified Soil with Dissolved Organic Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Reagent
2.1.1. Soil
2.1.2. Biochar
2.1.3. B-soil
2.1.4. DOM
2.1.5. Reagents
2.2. Physicochemical Analyses
2.3. Adsorption Experiments
2.4. Adsorption Kinetics Analysis
2.5. Adsorption Thermodynamics Analysis
3. Results and Discussion
3.1. Characterization of the Sample
3.1.1. Characterizations of Biochar and Soil
3.1.2. Characterization of DOM
3.2. Adsorption Results
3.2.1. DOM and BPs Adsorption
3.2.2. Effect of DOM with Different Decomposition Times
3.2.3. Adsorption Kinetics
3.2.4. Adsorption Isotherms
3.3. Instructional Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, W.L.; Ping, P.A.; Yu, Z.Q.; Fu, J.M. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl. Geochem. 2003, 18, 955–972. [Google Scholar] [CrossRef]
- Maurer, F.; Christl, I.; Kretzschmar, R. Reduction and reoxidation of humic acid: Influence on spectroscopic properties and proton binding. Environ. Sci. Technol. 2010, 44, 5787–5792. [Google Scholar] [CrossRef] [PubMed]
- Kowalczuk, P.; Stoń-Egiert, J.; Cooper, W.J.; Whitehead, R.F.; Durako, M.J. Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy. Mar. Chem. 2005, 96, 273–292. [Google Scholar] [CrossRef]
- Hassett, J.P. Chemistry-Dissolved natural organic matter as a microreactor. Science 2006, 311, 1723–1724. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Chen, J.W.; Qiao, X.L.; Wang, Y.; Cai, X.Y.; Zhou, C.Z.; Zhang, Y.L.; Ding, G.H. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters. Water Res. 2018, 144, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Hood, E.; Williams, M.W.; McKnight, D.M. Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 2005, 74, 231–255. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nishida, A.; Otsuk, K.; Komai, T.; Fukushima, M. Evaluation of the binding of iron(II) to humic substances derived from a compost sample by a colorimetric method using ferrozine. Bioresour. Technol. 2010, 101, 4456–4460. [Google Scholar] [CrossRef] [PubMed]
- Arnich, N.; Canivenc, L.M.; Kolf, C.M.; Coffigny, H.; Cravedi, J.P.; Grob, K.; Macherey, A.C.; Masset, D.; Maximilien, R.; Narbonne, J.F.; et al. Conclusions of the french food safety agency on the toxicity of bisphenol A. Int. J. Hyg. Environ. Health 2011, 214, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Leong, L.P.; Barlow, P.J.; Chan, S.H.; Bloodworth, B.C. Single laboratory validation of a method for the determination of Bisphenol A, Bisphenol A diglycidyl ether and its derivatives in canned foods by reversed-phase liquid chromatography. J. Chromatogr. A 2006, 1129, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Migeot, V.; Dupuis, A.; Cariot, A.; Albouy, L.M.; Pierre, F.; Rabouan, S. Bisphenol A and its chlorinated derivatives in human colostrums. Environ. Sci. Technol. 2013, 47, 13791–13797. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Sreedhanya, S.; Manoj, P.; Aravindakumar, C.T.; Aravind, U.K. Exploring the interaction of bisphenol-S with serum albumins: A better or worse alternative for bisphenol A? J. Phys. Chem. B 2014, 118, 3832–3843. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Guo, Y.; Moon, H.B.; Nakata, H.; Wu, Q.; Kannan, K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: Implications for human exposure. Environ. Sci. Technol. 2012, 46, 9138–9145. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Kannan, K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Küchler, T.; Otto, T.; Pilz, K.; Müller, J.; Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002, 36, 1429–1438. [Google Scholar] [CrossRef]
- Viñas, P.; Campillo, N.; Martínez-Castillo, N.; Hernández, C. Comparison of two derivatization-based methods for solidphase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. Anal. Bioanal. Chem. 2010, 397, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Alomirah, H.; Loi, V.D.; Mohd, M.A.; Moon, H.B.; Nakata, H.; Kannan, K. Bisphenol S in Urine from the United States and Seven Asian Countries: Occurrence and Human Exposures. Environ. Sci. Technol. 2012, 46, 6860–6866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ike, M.; Chen, M.Y.; Danzl, E.; Sei, K.; Fujita, M. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions. Water Sci. Technol. 2006, 53, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tegan, S.H.; Hannah, P.; Crystal, L.; Roy, G.; Spencer, M.; Mary, C.G.; Caroline, V.S.; Patricia, A.H. Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr. Biol. 2018, 28, 2948–2954. [Google Scholar]
- Guo, H.Y.; Li, H.; Liang, N.; Chen, F.Y.; Liao, S.H.; Zhang, D.; Wu, M.; Pan, B. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite. Environ. Sci. Pollut. Res. 2016, 23, 8976–8984. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.; Sheng, G.Y.; Chou, C.T.; Xing, B. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; He, W.; Liu, W.X.; Kong, X.Z.; Yang, B.; Yang, C.; Xu, F.L. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks. Environ. Pollut. 2015, 206, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Ouyang, Z.; Xu, W.; Wang, X.K.; Mao, H.; Li, X.Q.; Tian, Y.X. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. For. Ecol. Manag. 2008, 255, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.M.; Wang, B.R.; Xu, M.G. Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 2009, 19, 199–207. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yang, X.; Liu, L.; Ju, M.T.; Zheng, K. Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater. Materials 2018, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Ju, M.T.; Liu, L.; Zheng, K. Mercury Adsorption to Aged Biochar and its Management in China. Environ. Sci. Pollut. Res. 2019, 26, 4867–4877. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, D.; Pei, Z. Kinetics and thermodynamics studies for bisphenol S adsorption on reduced graphene oxide. RSC Adv. 2016, 6, 60145–60151. [Google Scholar] [CrossRef] [Green Version]
- Andreas, S.; Vanja, A.; Rolf, D.V.; Tone, C.G.; Jan, M.; Gerard, C.; Sarah, E.H. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 2016, 142, 100–105. [Google Scholar]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Li, G.T.; Lin, Q.M.; Zhao, X.R. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. J. Integr. Agr. 2014, 13, 525–532. [Google Scholar] [CrossRef]
- Zhao, R.; Coles, N.; Kong, Z.; Wu, J.P. Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil Tillage Res. 2015, 146, 133–138. [Google Scholar] [CrossRef]
- Hou, Q.D.; Zhen, M.N.; Liu, L.; Chen, Y.; Huang, F.; Zhang, S.Q.; Li, W.Z.; Ju, M.T. Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl. Catal. B Environ. 2017, 224, 183–193. [Google Scholar] [CrossRef]
- Hale, S.; Hanley, K.; Lehmann, J.; Zimmerman, A.; Cornelissen, G. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environ. Sci. Technol. 2011, 45, 10445–10453. [Google Scholar] [CrossRef] [PubMed]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Gao, B.J.; Wang, J.; An, F.Q.; Liu, Q. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer 2008, 49, 1230–1238. [Google Scholar] [CrossRef]
- Chen, X.C.; Chen, G.G.; Chen, L.G.; Chen, Y.X.; Lehmann, J.; McBride, M.B. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhang, M.; Zhao, D. Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper. Desalination 2008, 228, 135–149. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009, 75, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Demisie, W.; Zhang, M. Simulated degradation of biochar and its potential environmental implications. Environ. Pollut. 2013, 179, 146. [Google Scholar] [CrossRef] [PubMed]
- Lammers, K.; Arbuckle-Keil, G.; Dighton, J. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biol. Biochem. 2009, 41, 340–347. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.S.; Li, P.S.; Zhang, J.Y.; Zheng, C.G. Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy Fuels 2009, 23, 4605–4611. [Google Scholar] [CrossRef]
- Das, D.D.; Schnitzer, M.I.; Monreal, C.M.; Mayer, P. Chemical composition of acid-base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresour. Technol. 2009, 100, 6524–6532. [Google Scholar] [CrossRef] [PubMed]
- Bustin, R.M.; Guo, Y. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. Int. J. Coal Geol. 1999, 38, 237–260. [Google Scholar] [CrossRef]
- Wen, W.; Xia, X.H.; Chen, X.; Wang, H.T.; Zhu, B.T.; Li, H.S.; Li, Y. Bioconcentration of perfluoroalkyl substances by Chironomus plumosus larvae in water with different types of dissolved organic matters. Environ. Pollut. 2016, 213, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Jacquin, C.; Lesage, G.; Traber, J.; Pronk, W.; Heran, M. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of proteinand humic-like substances in full-scale membrane bioreactor (MBR). Water Res. 2017, 118, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Strobel, B.W.; Hansen, H.C.B.; Borggaard, O.K.; Andersen, M.K.; Raulund-Rasmussen, K. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry 2001, 56, 1–26. [Google Scholar] [CrossRef]
- Armanious, A.; Münch, M.; Kohn, T.; Sander, M. Competitive Co-adsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces. Environ. Sci. Technol. 2016, 50, 3597–3606. [Google Scholar] [CrossRef] [PubMed]
- Hermosín, M.C.; Roldán, I.; Cornejo, J. Maleic hydrazide interaction with soil clay surfaces. Chemosphere 1991, 23, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Namasivayam, C.; Kadirvelu, K. Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid byproduct: Coirpith. Carbon 1999, 37, 79–84. [Google Scholar] [CrossRef]
- Fan, X.; Parker, D.J.; Smith, M.D. Adsorption kinetics of fluoride on low cost materials. Water Res. 2003, 37, 4929–4937. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, J.; Rupp, E.; Ying, S.C.; Lim, D.H.; Negreira, A.S.; Kirchofer, A.; Feng, F.; Lee, K. Mercury adsorption and oxidation in coal combustion and gasification processes. Int. J. Coal Geol. 2012, 90, 4–20. [Google Scholar] [CrossRef]
- Yenisoy, K.S.; Aygun, A.; Gunes, M.; Tahtasakal, E. Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 2004, 42, 477–484. [Google Scholar] [CrossRef]
- Xiong, Z.; He, F.; Zhao, D.; Barnett, M.O. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res. 2009, 43, 5171. [Google Scholar] [CrossRef] [PubMed]
Sample | k2 (g·mg−1·min−1) | h (mg·g−1·min−1) | qe (mg·g−1) | R2 |
---|---|---|---|---|
Soil | 0.0246 | 0.1300 | 2.2999 | 0.9969 |
B-soil | 0.0170 | 0.1430 | 2.9011 | 0.9995 |
Soil + DOM | 0.0513 | 0.3104 | 2.4594 | 0.9999 |
B-soil + DOM | 0.0511 | 0.3571 | 2.6427 | 0.9999 |
Sample | T (K) | R2 | Kf | 1/n | Sample | T (K) | R2 | Kf | 1/n |
---|---|---|---|---|---|---|---|---|---|
Soil | 288 | 0.9996 | 0.5383 | 0.3411 | Soil + DOM | 288 | 0.9955 | 0.5837 | 0.3293 |
298 | 0.9980 | 0.5580 | 0.4061 | 298 | 0.9929 | 0.6081 | 0.4036 | ||
308 | 0.9919 | 0.5992 | 0.4512 | 308 | 0.9964 | 0.6174 | 0.4397 | ||
B-soil | 288 | 0.9996 | 0.6412 | 0.3037 | B-soil + DOM | 288 | 0.9901 | 0.6032 | 0.3181 |
298 | 0.9994 | 0.6556 | 0.3562 | 298 | 0.9999 | 0.6298 | 0.3346 | ||
308 | 0.9990 | 0.6959 | 0.3815 | 308 | 0.9946 | 0.6712 | 0.4040 |
Sample | C0 (mg·L−1) | ΔH0 (kJ·mol−1) | ΔS0 (J·mol−1·K−1) | ΔG0 (kJ·mol−1) | ||
---|---|---|---|---|---|---|
308 K | 298 K | 288 K | ||||
Soil | 10 | 20.5152 | 114.4782 | −24.80672 | −23.46912 | −22.13144 |
20 | 12.0577 | 107.5530 | −24.21392 | −23.11512 | −22.01632 | |
40 | 10.7049 | 80.7331 | −21.56264 | −20.58496 | −19.60728 | |
80 | 7.9711 | 86.6679 | −20.58432 | −19.70936 | −18.83448 | |
B-soil | 10 | 28.8197 | 184.6734 | −48.591202 | −45.396238 | −35.510153 |
20 | 17.0630 | 139.3851 | −44.787105 | −42.375831 | −32.576592 | |
40 | 13.2305 | 105.3929 | −41.946099 | −40.122852 | −30.384682 | |
80 | 10.8852 | 97.8035 | −40.227517 | −38.535577 | −29.123512 | |
Soil + DOM | 10 | 23.8728 | 133.7623 | −27.84576 | −26.01408 | −24.1824 |
20 | 15.6082 | 109.8818 | −26.45488 | −24.73392 | −23.01312 | |
40 | 11.0857 | 97.7659 | −28.49872 | −26.884 | −25.26928 | |
80 | 8.8361 | 87.4938 | −26.99296 | −25.6064 | −24.21968 | |
B-soil+DOM | 10 | 25.1692 | 166.2061 | −39.32236 | −36.73684 | −28.73654 |
20 | 116.2261 | 125.4466 | −36.2439 | −34.29258 | −26.36256 | |
40 | 12.3845 | 100.1233 | −33.94482 | −32.46936 | −24.58876 | |
80 | 9.5069 | 88.0232 | −32.55406 | −31.18486 | −23.56816 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yang, X.; Liu, L.; Zheng, K.; Ju, M.; Liu, J. Bisphenol S Adsorption Behavior on Ferralsol and Biochar Modified Soil with Dissolved Organic Matter. Int. J. Environ. Res. Public Health 2019, 16, 764. https://doi.org/10.3390/ijerph16050764
Zhang S, Yang X, Liu L, Zheng K, Ju M, Liu J. Bisphenol S Adsorption Behavior on Ferralsol and Biochar Modified Soil with Dissolved Organic Matter. International Journal of Environmental Research and Public Health. 2019; 16(5):764. https://doi.org/10.3390/ijerph16050764
Chicago/Turabian StyleZhang, Shiqiu, Xue Yang, Le Liu, Kui Zheng, Meiting Ju, and Jinpeng Liu. 2019. "Bisphenol S Adsorption Behavior on Ferralsol and Biochar Modified Soil with Dissolved Organic Matter" International Journal of Environmental Research and Public Health 16, no. 5: 764. https://doi.org/10.3390/ijerph16050764
APA StyleZhang, S., Yang, X., Liu, L., Zheng, K., Ju, M., & Liu, J. (2019). Bisphenol S Adsorption Behavior on Ferralsol and Biochar Modified Soil with Dissolved Organic Matter. International Journal of Environmental Research and Public Health, 16(5), 764. https://doi.org/10.3390/ijerph16050764