Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar
2.2. Physical and Chemical Characterization
2.3. Batch Adsorption Experiments
2.3.1. Effect of Pyrolytic Temperature on Cd Adsorption
2.3.2. Adsorption Batch Experiments
2.4. Cation Exchange During Cd Adsorption Process
2.5. SEM-EDX, FTIR, and XRD Analysis
3. Results and Discussion
3.1. Characterization of Biochars
3.2. Comparison of Cd Removal Efficiency at Different Pyrolytic Temperatures
3.3. Isotherm of Cd Adsorption on Biochars
3.4. The Effect of pH and Temperature
3.5. Adsorption Mechanism
3.5.1. Cation Exchange
3.5.2. Precipitation with Minerals
3.5.3. Surface Complexation with oxygen-containing functional groups (OFGs) and Coordination with π Electrons
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, W.K.; Shim, T.; Kim, Y.S.; Hyun, S.; Ryu, C.; Park, Y.K.; Jung, J. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour. Technol. 2013, 138, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Dong, X.; Ime, I.M.; Gao, B.; Ma, L.Q. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 2014, 105, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shan, B.; Tang, W.; Zhu, Y. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour. Technol. 2017, 238, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, Y.; Chen, M.; Luo, X.; Chen, Y.; Belzile, N.; Huang, S. Adsorption of cadmium on degraded soils amended with maize-stalk-derived biochar. Int. J. Environ. Res. Public Health 2018, 15, 2331. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.D.; Ma, L.N.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Yin, D.; Peng, B.; Tan, C.; Liu, Y.; Tan, X.; Wu, S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J. Environ. Manag. 2015, 153, 68–73. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Luo, L.; Xu, C.; Chen, Z.; Zhang, S. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 2015, 192, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Fang, S.; Yao, Y.; Li, T.; Ni, Q.; Yang, X.; He, Z. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci. Total Environ. 2016, 562, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. Int. 2013, 20, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.J.; Xing, B.S. Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite. Environ. Pollut. 2004, 127, 13–20. [Google Scholar] [CrossRef]
- Bayat, B. Combined removal of zinc (II) and cadmium (II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. Water Air Soil Pollut. 2002, 136, 69–92. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Wu, J.; Dai, G. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J. Hazard. Mater. 2011, 192, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.E.; Park, J.H.; Chung, J.W. Adsorption of Pb(II) and Cu(II) by Ginkgo-Leaf-Derived Biochar Produced under Various Carbonization Temperatures and Times. Int. J. Environ. Res. Public Health 2017, 14, 1528. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 2012, 110, 50–56. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Z.; Feng, Q.; Yao, D.; Yu, J.; Wang, D.; Lv, S.; Liu, Y.; Zhou, N.; Zhong, M. Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. J. Clean. Prod. 2018, 187, 996–1005. [Google Scholar] [CrossRef]
- Wan, S.; Ma, Z.; Xue, Y.; Ma, M.; Xu, S.; Qian, L.; Zhang, Q. Sorption of lead(II), cadmium(II), and copper(II) ions from aqueous solutions using tea waste. Ind. Eng. Chem. Res. 2014, 53, 3629–3635. [Google Scholar] [CrossRef]
- Harvey, O.R.; Herbert, B.E.; Rhue, R.D.; Kuo, L.J. Metal interactions at the biocharwater interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ. Sci. Technol. 2011, 45, 5550–5556. [Google Scholar] [CrossRef] [PubMed]
Biochar | pH | Ec (mS/cm) | Ca * (mg/g) | Mg * (mg/g) | Elemental Composition | Molar Ratio | Surface Area (m2/g) | Pore Volume (cm3/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C (%) | H (%) | O (%) | N (%) | S (%) | H/C | O/C | |||||||
MSB300 | 7.4 ± 0.2 | 1.75 ± 0.03 | 8.46 ± 0.43 | 1.32 ± 0.05 | 24.14 | 2.25 | 20.93 | 2.19 | 0.96 | 1.12 | 0.65 | 10.3 | 0.034 |
MSB400 | 9.1 ± 0.2 | 1.53 ± 0.02 | 8.26 ± 0.23 | 1.13 ± 0.02 | 25.85 | 1.68 | 14.83 | 1.91 | 1.16 | 0.78 | 0.43 | 17.1 | 0.047 |
MSB500 | 9.4 ± 0.1 | 1.10 ± 0.07 | 7.35 ± 0.35 | 0.93 ± 0.07 | 22.08 | 0.99 | 12.94 | 1.41 | 0.97 | 0.54 | 0.44 | 24.5 | 0.065 |
MSB600 | 10.1 ± 0.1 | 0.76 ± 0.02 | 4.30 ± 0.20 | 0.42 ± 0.02 | 26.44 | 0.68 | 9.54 | 1.46 | 0.99 | 0.31 | 0.27 | 31.1 | 0.062 |
PLB300 | 7.3 ± 0.1 | 1.35 ± 0.04 | 5.97 ± 0.31 | 1.41 ± 0.01 | 52.66 | 4.25 | 28.29 | 1.23 | 1.05 | 0.97 | 0.40 | 0.2 | 0.001 |
PLB400 | 8.3 ± 0.1 | 1.06 ± 0.2 | 5.15 ± 0.24 | 1.22 ± 0.05 | 47.56 | 3.22 | 24.62 | 1.19 | 0.93 | 0.81 | 0.39 | 0.6 | 0.003 |
PLB500 | 9.4 ± 0.1 | 1.37 ± 0.08 | 4.47 ± 0.39 | 0.95 ± 0.04 | 50.24 | 1.94 | 19.45 | 1.17 | 0.96 | 0.46 | 0.29 | 7.8 | 0.023 |
PLB600 | 9.6 ± 0.1 | 1.64 ± 0.07 | 3.76 ± 0.30 | 0.44 ± 0.06 | 54.62 | 1.32 | 16.22 | 1.11 | 1.03 | 0.29 | 0.22 | / | / |
Adsorbent | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qmax (mg/g) | b (L/mg) | R2 | kf | 1/n | R2 | |
MSB300 | 30.30 | 0.03 | 0.93 | 3.03 | 0.41 | 0.97 |
MSB400 | 30.12 | 0.09 | 0.97 | 5.28 | 0.35 | 0.90 |
MSB500 | 35.46 | 0.08 | 0.94 | 6.21 | 0.35 | 0.90 |
MSB600 | 17.21 | 0.04 | 0.98 | 3.19 | 0.29 | 0.98 |
PLB300 | 21.83 | 0.03 | 0.97 | 3.30 | 0.32 | 0.97 |
PLB400 | 14.16 | 0.45 | 0.99 | 7.51 | 0.12 | 0.82 |
PLB500 | 25.45 | 0.12 | 0.97 | 10.20 | 0.16 | 0.97 |
PLB600 | 19.49 | 0.13 | 0.99 | 8.88 | 0.13 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, M.; Lv, Q. Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars. Int. J. Environ. Res. Public Health 2019, 16, 845. https://doi.org/10.3390/ijerph16050845
Wang H, Zhang M, Lv Q. Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars. International Journal of Environmental Research and Public Health. 2019; 16(5):845. https://doi.org/10.3390/ijerph16050845
Chicago/Turabian StyleWang, Haixia, Mingliang Zhang, and Qi Lv. 2019. "Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars" International Journal of Environmental Research and Public Health 16, no. 5: 845. https://doi.org/10.3390/ijerph16050845
APA StyleWang, H., Zhang, M., & Lv, Q. (2019). Influence of Pyrolysis Temperature on Cadmium Removal Capacity and Mechanism by Maize Straw and Platanus Leaves Biochars. International Journal of Environmental Research and Public Health, 16(5), 845. https://doi.org/10.3390/ijerph16050845