Influence of Living Arrangements and Eating Behavior on the Risk of Metabolic Syndrome: A National Cross-Sectional Study in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Metabolic Syndrome
2.3. Living Arrangements and Eating Behavior
2.4. Dietary Intake
2.5. Covariates
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world—A growing challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef]
- Nakajima, K.; Suwa, K. Association of hyperglycemia in a general Japanese population with late-night-dinner eating alone, but not breakfast skipping alone. J. Diabetes Metab. Dis. 2015, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Scott, J. Living alone: Globalization, identity, and belonging. Am. J. Sociol. 2015, 120, 1269–1271. [Google Scholar] [CrossRef]
- Statistics Korea. Population and Housing Census. Statistics Korea, 2016. Available online: http://kostat.go.kr/portal/eng/index.action (accessed on 29 December 2017).
- Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Agardh, C.D. Women living alone have an increased risk to develop diabetes, which is explained mainly by lifestyle factors. Diabetes Care 2005, 28, 2531–2536. [Google Scholar] [CrossRef] [PubMed]
- Udell, J.A.; Steg, P.G.; Scirica, B.M.; Smith, S.C., Jr.; Ohman, E.M.; Eagle, K.A.; Cho, J.I.; Bhatt, D.L.; REduction of Atherothrombosis for Continued Health (REACH) Registry Investigators. Living alone and cardiovascular risk in outpatients at risk of or with atherothrombosis. Arch. Intern. Med. 2012, 172, 1086–1095. [Google Scholar] [CrossRef]
- Elstgeest, L.E.M.; Mishra, G.D.; Dobson, A.J. Transitions in living arrangements are associated with changes in dietary patterns in young women. J. Nutr. 2012, 142, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Hanna, K.L.; Collins, P.F. Relationship between living alone and food and nutrient intake. Nutr. Rev. 2015, 73, 594–611. [Google Scholar] [CrossRef]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S.; Three-generation study of women on diets and health study group. Living status and frequency of eating out-of-home foods in relation to nutritional adequacy in 4017 Japanese female dietetic students aged 18–20 years: A multicenter cross-sectional study. J. Epidemiol. 2017, 27, 287–293. [Google Scholar] [CrossRef]
- McCourt, H.J.; Draffin, C.R.; Woodside, J.V.; Cardwell, C.R.; Young, I.S.; Hunter, S.J.; Murray, L.J.; Boreham, C.A.; Gallagher, A.M.; Neville, C.E.; et al. Dietary patterns and cardiovascular risk factors in adolescents and young adults: The Northern Ireland Young Hearts Project. Br. J. Nutr. 2014, 112, 1685–1698. [Google Scholar] [CrossRef]
- Larson, N.I.; Nelson, M.C.; Neumark-Sztainer, D.; Story, M.; Hannan, P.J. Making time for meals: Meal structure and associations with dietary intake in young adults. J. Am. Diet. Assoc. 2009, 109, 72–79. [Google Scholar] [CrossRef]
- Salameh, P.; Jomaa, L.; Issa, C.; Farhat, G.; Salamé, J.; Zeidan, N.; Baldi, I.; Lebanese National Conference for Health in University Research Group. Assessment of dietary intake patterns and their correlates among university students in Lebanon. Front Public Health 2014, 2, 185. [Google Scholar] [CrossRef] [PubMed]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Khaw, K.T.; Wareham, N.J.; Monsivais, P. Social relationships and healthful dietary behaviour: Evidence from over-50s in the EPIC cohort, UK. Soc. Sci. Med. 2014, 100, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C.; National Heart, Lung, and Blood Institute; American Heart Association. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare; The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2015; Ministry of Health and Welfare: Sejong, Korea, 2015.
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Rogers, G.; Yoshida, M.; Saltzman, E.; Jacques, P.F. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham Offspring Cohort. J. Am. Coll. Nutr. 2009, 28, 150–158. [Google Scholar] [CrossRef]
- Patel, K.A.; Schlundt, D.G. Impact of moods and social context on eating behavior. Appetite 2001, 36, 111–118. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, K.S.; Park, H.Y. Dietary carbohydrate intake is associated with cardiovascular disease risk in Korean: Analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). Int. J. Cardiol. 2010, 139, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Ebrahim, S.; Barros, H. Gender, socio-economic status and metabolic syndrome in middle-aged and old adults. BMC Public Health 2008, 8, 62. [Google Scholar] [CrossRef]
- Murayama, N. Effects of socioeconomic status on nutrition in Asia and future nutrition policy studies. J. Nutr. Sci. Vitaminol. (Tokyo) 2015, 61, S66–S68. [Google Scholar] [CrossRef]
- Fitzgerald, A.; Heary, C.; Nixon, E.; Kelly, C. Factors influencing the food choices of Irish children and adolescents: A qualitative investigation. Health Promot. Int. 2010, 25, 289–298. [Google Scholar] [CrossRef]
- Laska, M.N.; Graham, D.; Moe, S.G.; Lytle, L.; Fulkerson, J. Situational characteristics of young adults’ eating occasions: A real-time data collection using Personal Digital Assistants. Public Health Nutr. 2011, 14, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Jabs, J.; Devine, C.M. Time scarcity and food choices: An overview. Appetite 2006, 47, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Cheng, H.L.; Wahlqvist, M.L.; Lo, Y.T.C.; Lee, M.S. Gender differences in longevity in free-living older adults who eat-with-others: A prospective study in Taiwan. BMJ Open 2017, 7, e016575. [Google Scholar] [CrossRef]
- Orfanos, P.; Naska, A.; Trichopoulou, A.; Grioni, S.; Boer, J.M.; Van Bakel, M.M.; Ericson, U.; Rohrmann, S.; Boeing, H.; Rodríguez, L.; et al. Eating out of home: Energy, macro- and micronutrient intakes in 10 European countries. The European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 4), S239–S262. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Joung, H.; Lim, J.; Lee, Y.S.; Song, Y.J. Secular trend in dietary patterns in a Korean adult population, using the 1998, 2001, and 2005 Korean National Health and Nutrition Examination Survey. Korean J. Nutr. 2011, 44, 10. [Google Scholar] [CrossRef]
- Jeong, S.; Cho, S.I. Effects of living alone versus with others and of housemate type on smoking, drinking, dietary habits, and physical activity among elderly people. Epidemiol. Health 2017, 39, e2017034. [Google Scholar] [CrossRef]
- Hammons, A.J.; Fiese, B.H. Is frequency of shared family meals related to the nutritional health of children and adolescents? Pediatrics 2011, 127, E1565–E1574. [Google Scholar] [CrossRef]
- Kwon, A.R.; Yoon, Y.S.; Min, K.P.; Lee, Y.K.; Jeon, J.H. Eating alone and metabolic syndrome: A population-based Korean National Health and Nutrition Examination Survey 2013–2014. Obes. Res. Clin. Pract. 2017, 12, 146–157. [Google Scholar] [CrossRef]
- Herman, C.P. The social facilitation of eating. A review. Appetite 2015, 86, 61–73. [Google Scholar] [CrossRef]
- Tani, Y.; Sasaki, Y.; Haseda, M.; Kondo, K.; Kondo, N. Eating alone and depression in older men and women by cohabitation status: The JAGES longitudinal survey. Age Ageing 2015, 44, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shen, W.; Wang, C.; Zhang, X.; Xiao, Y.; He, F.; Zhai, Y.; Li, F.; Shang, X.; Lin, J. Association between eating alone and depressive symptom in elders: A cross-sectional study. BMC Geriatr. 2016, 16, 19. [Google Scholar] [CrossRef]
- Lee, S.A.; Park, E.C.; Ju, Y.J.; Nam, J.Y.; Kim, T.H. Is one’s usual dinner companion associated with greater odds of depression? Using data from the 2014 Korean National Health and Nutrition Examination Survey. Int. J. Soc. Psychiatry 2016, 62, 560–568. [Google Scholar] [CrossRef]
- Ghanei Gheshlagh, R.; Parizad, N.; Sayehmiri, K. The relationship between depression and metabolic syndrome: Systematic review and meta-analysis study. Iran Red Crescent Med. J. 2016, 18, e26523. [Google Scholar] [CrossRef]
<65 years | p | ≥65 years | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LW × EW 2 (n = 10,765) | LW × EA (n = 363) | LA × EW (n = 467) | LA × EA (n = 165) | LW × EW (n = 3099) | LW × EA (n = 283) | LA × EW (n = 307) | LA × EA (n = 566) | |||
Total energy (kcal) | 1889.5 ± 45.9 | 1853.0 ± 103.5 | 1899.97 ± 81.35 | 1990.7 ± 150.7 | 0.90 | 1580.2 ± 66.7 | 1523.3 ± 93.2 | 1648.9 ± 104.9 | 1704.6 ± 94.5 | 0.30 |
Carbohydrate (g) | 346.6 ± 5.0 | 367.7 ± 1.0 | 331.9 ± 9.3 | 371.9 ± 12.8 | <0.01 | 328.0 ± 5.0 | 319.0 ± 9.6 | 308.7 ± 15.0 | 324.5 ± 7.8 | 0.41 |
Protein (g) | 64.7 ± 1.6 | 63.46 ± 3.6 | 63.2 ± 2.7 | 63.7 ± 4.8 | 0.20 | 51.0 ± 2.2 | 48.4 ± 3.0 | 50.7 ± 3.2 | 55.0 ± 3.1 | 0.91 |
Lipids (g) | 54.79 ± 1.5 | 54.71 ± 3.4 | 58.5 ± 2.4 | 55.3 ± 3.8 | 0.43 | 33.4 ± 14.4 | 33.3 ± 2.3 | 35.2 ± 4.1 | 34.2 ± 2.0 | 0.96 |
% Energy from carbohydrate | 64.9 | 67.3 | 61.8 | 69.1 | <0.01 | 71.6 | 70.3 | 68.9 | 70.5 | 0.56 |
% Energy from protein | 13.7 | 13.7 | 13.3 | 12.8 | 0.10 | 12.9 | 12.7 | 12.3 | 12.9 | 0.72 |
% Energy from fat | 18.9 | 18.6 | 20.1 | 17.8 | 0.23 | 13.9 | 13.8 | 14.4 | 14.1 | 0.99 |
<65 years | p | ≥65 years | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LW × EW 2 (n = 10,765) | LW × EA (n = 363) | LA × EW (n = 467) | LA × EA (n = 165) | LW × EW (n = 3099) | LW × EA (n = 283) | LA × EW (n = 307) | LA × EA (n = 566) | |||
Waist circumference (male ≥ 90 cm, female ≥ 80 cm) | 3128 (31.0) | 139 (36.4) | 163 (30.5) | 77 (45.9) | <0.01 | 1349 (49.2) | 148 (53.6) | 183 (62.0) | 331 (61.4) | < 0.01 |
Triglycerides (≥150 mg/dL) | 989 (15.2) | 38 (14.3) | 67 (19.3) | 28 (23.8) | 0.05 | 280 (7.1) | 28 (9.0) | 33 (6.3) | 46 (9.6) | 0.70 |
HDL cholesterol (male < 40, female < 50 mg/dL) | 2899 (29.5) | 107 (27.8) | 136 (29.0) | 64 (40.6) | 0.16 | 997 (42.9) | 91 (47.4) | 118 (51.1) | 202 (51.8) | 0.01 |
Blood pressure (≥130/≥85 mmHg) | 1763 (17.6) | 77 (21.1) | 119 (21.0) | 60 (32.4) | <0.01 | 1578 (60.1) | 154 (63.7) | 185 (61.3) | 328 (63.8) | 0.45 |
Fasting blood glucose (≥110 mg/dL) | 620 (6.4) | 43 (13.3) | 32 (6.5) | 36 (23.2) | <0.01 | 512 (23.6) | 49 (30.8) | 50 (21.3) | 90 (23.9) | 0.17 |
Metabolic syndrome (three or more risk factors) | 778 (11.1) | 44 (15.8) | 50 (12.1) | 38 (30.4) | <0.01 | 558 (30.1) | 58 (39.6) | 70 (38.1) | 115 (37.8) | <0.01 |
<65 years | p | ≥65 years | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LW × EW 2 (n = 10,765) | LW × EA (n = 363) | LA × EW (n = 467) | LA × EA (n = 165) | LW × EW (n = 3099) | LW × EA (n = 283) | LA × EW (n = 307) | LA × EA (n = 566) | |||
Waist circumference (male ≥ 90 cm, female ≥ 80 cm) | ref | 1.12 * | 1.37 | 1.58 | 0.22 | ref | 1.28 | 0.87 | 1.19 | 0.65 |
(0.77–1.65) | (0.83–2.25) | (0.90–2.78) | (0.74–2.21) | (0.49–1.55) | (0.77–1.84) | |||||
Triglycerides (≥150 mg/dL) | ref | 1.15 | 1.13 | 1.23 | 0.84 | ref | 0.86 | 1.16 | 1.07 | 0.96 |
(0.77–1.71) | (0.62–2.07) | (0.62–2.41) | (0.39–1.88) | (0.46–2.92) | (0.53–2.14) | |||||
HDL cholesterol (male < 40, female < 50 mg/dL) | ref | 1.02 | 0.83 | 1.17 | 0.85 | ref | 0.88 | 0.87 | 0.82 | 0.87 |
(0.71–1.48) | (0.48–1.44) | (0.69–1.99) | (0.48–1.60) | (0.44–1.72) | (0.49–1.39) | |||||
Blood pressure (≥130/≥85 mmHg) | ref | 1.24 | 1.34 | 1.41 | 0.28 | ref | 1.11 | 1.21 | 1.16 | 0.84 |
(0.89–1.72) | (0.72–2.49) | (0.82–2.40) | (0.64–1.91) | (0.69–2.12) | (0.72–1.87) | |||||
Fasting blood glucose (≥110 mg/dL) | ref | 1.22 | 1.98 | 2.85 | <0.01 | ref | 0.93 | 1.13 | 0.77 | 0.85 |
(0.75–1.99) | (1.04–3.75) | (1.41–5.77) | (0.49–1.78) | (0.57–2.21) | (0.41–1.48) | |||||
Metabolic syndrome (three or more risk factors) | ref | 0.92 | 2.11 | 2.39 | 0.01 | ref | 1.22 | 1.06 | 0.85 | 0.86 |
(0.56–1.50) | (1.10–4.02) | (1.25–4.58) | (0.60–2.46) | (0.48–2.39) | (0.45–1.63) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.; Kim, H. Influence of Living Arrangements and Eating Behavior on the Risk of Metabolic Syndrome: A National Cross-Sectional Study in South Korea. Int. J. Environ. Res. Public Health 2019, 16, 919. https://doi.org/10.3390/ijerph16060919
Son H, Kim H. Influence of Living Arrangements and Eating Behavior on the Risk of Metabolic Syndrome: A National Cross-Sectional Study in South Korea. International Journal of Environmental Research and Public Health. 2019; 16(6):919. https://doi.org/10.3390/ijerph16060919
Chicago/Turabian StyleSon, Heesook, and Hyerang Kim. 2019. "Influence of Living Arrangements and Eating Behavior on the Risk of Metabolic Syndrome: A National Cross-Sectional Study in South Korea" International Journal of Environmental Research and Public Health 16, no. 6: 919. https://doi.org/10.3390/ijerph16060919
APA StyleSon, H., & Kim, H. (2019). Influence of Living Arrangements and Eating Behavior on the Risk of Metabolic Syndrome: A National Cross-Sectional Study in South Korea. International Journal of Environmental Research and Public Health, 16(6), 919. https://doi.org/10.3390/ijerph16060919