Geochemical Modeling Source Provenance, Public Health Exposure, and Evaluating Potentially Harmful Elements in Groundwater: Statistical and Human Health Risk Assessment (HHRA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Climate, Hydrology, and Hydrogeology
2.3. Preparation and Analysis of Groundwater Samples
2.4. Questioner Survey
2.5. Health Risk Assessment
2.6. Statistical Analysis
2.7. Pollution Index
2.8. Nemerow’s Pollution Indexing (NPI)
2.9. Cluster Analysis
2.10. Principal Component Analysis Multilinear Regression
2.11. Mapping
2.12. Quality Assurance and Quality Control
3. Results and Discussion
3.1. Geochemical Profile of Physicochemical Variables and Potential Harmful Elements
3.2. Geochemistry of Underground Mines Water
3.3. Geochemical Facies and Control Mechanism
3.4. Geochemical Speciation of PHEs
3.5. Mineral Phases of Potentially Harmful Elements in Groundwater
3.6. Non-Carcinogenic and Carcinogenic Risk of PHEs
3.7. Pearson Correlations for the Interrelationship of Measured Ions and Trace Metals
3.8. Groundwater Pollution Indexing in Complex Water Aquifer
3.9. Spatial Distribution of Groundwater Variables and PHEs Using Q-Q Plotting
3.10. Nemerow’s Pollution Indexing (NPI)
3.11. Cluster Analysis
3.12. Pollution Source Identification
3.13. Implication for the Sustainable Management of Groundwater Resources
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Ramanathan, A.; Tripathi, R.; Farswan, S.; Kumar, D.; Bhattacharya, P. A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India. Chemosphere 2017, 166, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Wang, H.; Loáiciga, H.A.; Hong, S.; Shao, W. Temporal variations of groundwater quality in the Western Jianghan Plain, China. Sci. Total Environ. 2017, 578, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhao, X.; Teng, Y.; Li, X.; Zhang, J.; Wu, J.; Zuo, R. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol. Environ. Saf. 2017, 137, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Nasir, J.; Ashfaq, M.; Baig, I.A.; Punthakey, J.F.; Culas, R.; Ali, A.; Hassan, F.u. Socioeconomic Impact Assessment of Water Resources Conservation and Management to Protect Groundwater in Punjab, Pakistan. Water 2021, 13, 2672. [Google Scholar] [CrossRef]
- Nesheim, I.; Sundnes, F.; Enge, C.; Graversgaard, M.; van den Brink, C.; Farrow, L.; Glavan, M.; Hansen, B.; Leitão, I.A.; Rowbottom, J. Multi-Actor Platforms in the Water–Agriculture Nexus: Synergies and Long-Term Meaningful Engagement. Water 2021, 13, 3204. [Google Scholar] [CrossRef]
- Rashid, A.; Ayub, M.; Javed, A.; Khan, S.; Gao, X.; Li, C.; Ullah, Z.; Sardar, T.; Muhammad, J.; Nazneen, S. Potentially harmful metals, and health risk evaluation in groundwater of Mardan, Pakistan: Application of geostatistical approach and geographic information system. Geosci. Front. 2021, 12, 101128. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Gupta, S.K.; Kotecha, Y.; Nema, A.K. Groundwater quality in Ghaziabad district, Uttar Pradesh, India: Multivariate and health risk assessment. Chemosphere 2017, 179, 167–178. [Google Scholar] [CrossRef]
- de Jesus Gaffney, V.; Almeida, C.M.; Rodrigues, A.; Ferreira, E.; Benoliel, M.J.; Cardoso, V.V. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 2015, 72, 199–208. [Google Scholar] [CrossRef]
- Rashid, A.; Guan, D.-X.; Farooqi, A.; Khan, S.; Zahir, S.; Jehan, S.; Khattak, S.A.; Khan, M.S.; Khan, R. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 2018, 635, 203–215. [Google Scholar] [CrossRef] [Green Version]
- KKarwot, J.; Ober, J. Safety management of water economy. Case study of the water and sewerage company. Manag. Syst. Prod. Eng. 2019, 27, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.-S.; Sakong, J.; Choi, J.-W.; Hong, Y.-S.; Moon, J.-D.; Lee, B.-K. Blood Lead Level of Residents Living Around 350 Abandoned Metal Mines in Korea. Epidemiology 2011, 22, S74. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, P.; Pal, A.K.; Mishra, V. Water pollutants: Origin and status. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Berlin/Heidelberg, Germany, 2020; pp. 5–20. [Google Scholar]
- Khattak, S.A.; Rashid, A.; Tariq, M.; Ali, L.; Gao, X.; Ayub, M.; Javed, A. Potential risk and source distribution of groundwater contamination by mercury in district Swabi, Pakistan: Application of multivariate study. Environ. Dev. Sustain. 2021, 23, 2279–2297. [Google Scholar] [CrossRef]
- Allan, J.D.; Castillo, M.M.; Capps, K.A. Stream Ecology: Structure and Function of Running Waters; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Gupta, P.K.; Yadav, B.K.; Sharma, D. Impacts of climatic variability on subsurface water resources. In Advances in Remediation Techniques for Polluted Soils and Groundwater; Elsevier: Amsterdam, The Netherlands, 2022; pp. 171–189. [Google Scholar]
- Jasechko, S.; Birks, S.J.; Gleeson, T.; Wada, Y.; Fawcett, P.J.; Sharp, Z.D.; McDonnell, J.J.; Welker, J.M. The pronounced seasonality of global groundwater recharge. Water Resour. Res. 2014, 50, 8845–8867. [Google Scholar] [CrossRef] [Green Version]
- Rye, C.; Smettem, K. Seasonal variation of subsurface flow pathway spread under a water repellent surface layer. Geoderma 2018, 327, 1–12. [Google Scholar] [CrossRef]
- Pham, S.V.; Leavitt, P.R.; McGowan, S.; Wissel, B.; Wassenaar, L.I. Spatial and temporal variability of prairie lake hydrology as revealed using stable isotopes of hydrogen and oxygen. Limnol. Oceanogr. 2009, 54, 101–118. [Google Scholar] [CrossRef]
- Ober, J.; Karwot, J.; Rusakov, S. Tap Water Quality and Habits of Its Use: A Comparative Analysis in Poland and Ukraine. Energies 2022, 15, 981. [Google Scholar] [CrossRef]
- Beckinsale, R.P. River regimes. In Water, Earth, and Man; Routledge: London, UK, 2021; pp. 455–471. [Google Scholar]
- Kaur, T.; Bhardwaj, R.; Arora, S. Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Malwa region, southwestern part of Punjab, India. Appl. Water Sci. 2017, 7, 3301–3316. [Google Scholar] [CrossRef] [Green Version]
- Kalyoncu, L.; Kalyoncu, H.; Arslan, G. Determination of heavy metals and metals levels in five fish species from Işıklı Dam Lake and Karacaören Dam Lake (Turkey). Environ. Monit. Assess. 2012, 184, 2231–2235. [Google Scholar] [CrossRef]
- Cundy, A.B.; Hopkinson, L.; Whitby, R.L. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ. 2008, 400, 42–51. [Google Scholar] [CrossRef]
- Li, F.; Qiu, Z.; Zhang, J.; Liu, W.; Liu, C.; Zeng, G. Investigation, pollution mapping and simulative leakage health risk assessment for heavy metals and metalloids in groundwater from a typical brownfield, middle China. Int. J. Environ. Res. Public Health 2017, 14, 768. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, L.; Feng, N.; Lu, A.; Chen, W.; Wang, Y. Occurrence, risk assessment, and source of heavy metals in Liaohe River Protected Area from the watershed of Bohai Sea, China. Mar. Pollut. Bull. 2021, 169, 112489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Abuduwaili, J.; Jiang, F. Determination of occurrence characteristics of heavy metals in soil and water environments in Tianshan Mountains, Central Asia. Anal. Lett. 2013, 46, 2122–2131. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, H.; Ding, Y.; Chen, W.; Luo, J.; Li, H.; Wu, J.; Chen, W.; Qi, S. Trace metals in aquatic environments of a mangrove ecosystem in Nansha, Guangzhou, South China: Pollution status, sources, and ecological risk assessment. Environ. Monit. Assess. 2019, 191, 629. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Farooqi, A.; Gao, X.; Zahir, S.; Noor, S.; Khattak, J.A. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 2020, 243, 125409. [Google Scholar] [CrossRef]
- Rashid, A.; Khan, S.; Ayub, M.; Sardar, T.; Jehan, S.; Zahir, S.; Khan, M.S.; Muhammad, J.; Khan, R.; Ali, A. Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere 2019, 225, 785–795. [Google Scholar] [CrossRef]
- Jing, M.; Chen, W.; Zheng, T.; Liao, Y.; Ellis Burnet, J.; Xu, M.; Yang, C.; Shen, L.; Liang, M. Water geochemical characteristic variations in and around a karst-dominated natural reserve area, southwestern China. Environ. Earth Sci. 2011, 64, 1051–1058. [Google Scholar] [CrossRef]
- Lu, A.; Li, B.; Li, J.; Chen, W.; Xu, L. Heavy metals in paddy soil-rice systems of industrial and township areas from subtropical China: Levels, transfer and health risks. J. Geochem. Explor. 2018, 194, 210–217. [Google Scholar] [CrossRef]
- Pekey, H.; Karakaş, D.; Bakoglu, M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 2004, 49, 809–818. [Google Scholar] [CrossRef]
- Rattan, R.; Datta, S.; Chhonkar, P.; Suribabu, K.; Singh, A. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Magesh, N.; Chandrasekar, N.; Elango, L. Trace element concentrations in the groundwater of the Tamiraparani river basin, South India: Insights from human health risk and multivariate statistical techniques. Chemosphere 2017, 185, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Corniello, A.; Ducci, D. Hydrogeochemical characterization of the main aquifer of the “Litorale Domizio-Agro Aversano NIPS” (Campania—Southern Italy). J. Geochem. Explor. 2014, 137, 1–10. [Google Scholar] [CrossRef]
- Cuoco, E.; Darrah, T.; Buono, G.; Verrengia, G.; De Francesco, S.; Eymold, W.; Tedesco, D. Inorganic contaminants from diffuse pollution in shallow groundwater of the Campanian Plain (Southern Italy). Implications for geochemical survey. Environ. Monit. Assess. 2015, 187, 46. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Z.; Xing, X.; Hu, T.; Qu, C.; Chen, W.; Zhang, J. Potentially toxic metals in soil and dominant plants from Tonglushan Cu–Fe deposit, central China. Bull. Environ. Contam. Toxicol. 2019, 102, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Khattak, S.A.; Ali, L.; Zaib, M.; Jehan, S.; Ayub, M.; Ullah, S. Geochemical profile and source identification of surface and groundwater pollution of District Chitral, Northern Pakistan. Microchem. J. 2019, 145, 1058–1065. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Ali, L.; Rashid, A.; Khattak, S.A.; Zeb, M.; Jehan, S. Geochemical control of potential toxic elements (PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan. Microchem. J. 2019, 147, 516–523. [Google Scholar] [CrossRef]
- Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic in North America and Europe. In Arsenic Pollution: A Global Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 387–454. [Google Scholar]
- Khan, S.; Shahnaz, M.; Jehan, N.; Rehman, S.; Shah, M.T.; Din, I. Drinking water quality and human health risk in Charsadda district, Pakistan. J. Clean. Prod. 2013, 60, 93–101. [Google Scholar] [CrossRef]
- Carrard, N.; Foster, T.; Willetts, J. Groundwater as a source of drinking water in southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water 2019, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Amr, S.A.; Yassin, M.M. Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: Seven years of monitoring (2000–2006). Public Health 2008, 122, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Lehloesa, L.; Muyima, N. Evaluation of the impact of household treatment procedures on the quality of groundwater supplies in the rural community of the Victoria district, Eastern Cape. Water SA 2000, 26, 285–290. [Google Scholar]
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.-P. Water pollution in Pakistan and its impact on public health—A review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Ayub, M.; Khan, S.; Ullah, Z.; Ali, L.; Gao, X.; Li, C.; El-Serehy, H.A.; Kaushik, P.; Rasool, A. Hydrogeochemical Assessment of Carcinogenic and Non-Carcinogenic Health Risks of Potentially Toxic elements in Aquifers of the Hindukush Ranges, Pakistan: Insights from Groundwater Pollution Indexing, GIS-Based and Multivariate Statistical Approaches; Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Sajid, M.; Arif, M.; Muhammad, N. Petrographic characteristics and mechanical properties of rocks from Khagram-Razagram area, Lower Dir, NWFP, Pakistan. J. Himal. Earth Sci. 2009, 42, 25–36. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; WEF: Alexandria, VA, USA, 2005; Volume 21, pp. 258–259. [Google Scholar]
- Jehan, S.; Khattak, S.A.; Muhammad, S.; Ali, L.; Rashid, A.; Hussain, M.L. Human health risks by potentially toxic metals in drinking water along the Hattar Industrial Estate, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 2677–2690. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S. Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food Chem. Toxicol. 2010, 48, 2855–2864. [Google Scholar] [CrossRef]
- Canada, H. Development of a resource model for infection prevention and control programs in acute, long term, and home care settings: Conference proceedings of the Infection Prevention and Control Alliance. Am. J. Infect. Control 2004, 32, 2–6. [Google Scholar] [CrossRef]
- EPA. National Primary Drinking Water Standards; Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- Swathi, S.; Umesh, S. Nemerow’s pollution index: For ground water quality assessment. J. Environ. Sci. Pollut. Res. 2015, 1, 23–31. [Google Scholar]
- McKenna, J., Jr. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ. Model. Softw. 2003, 18, 205–220. [Google Scholar] [CrossRef]
- OTTO, M. Multivariate methods. In Analytical Chemistry; Kellner, R., Mermet, J.M., Otto, M., Widmer, H.M., Eds.; Wiley: Weinheim, Germany, 1998. [Google Scholar]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Simeonov, V.; Simeonova, P.; Tzimou-Tsitouridou, R. Chemometric quelity assessment of surface waters: Two case studies. Chem. Inżynieria Ekol. 2004, 11, 449–469. [Google Scholar]
- Lloyd, J.W.; Heathcote, J. Natural Inorganic Hydrochemistry in Relation to Ground Water; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 1985. [Google Scholar]
- World Health Organization. Guidelines for drinking-water quality. World Health Organ. 2011, 216, 303–304. [Google Scholar]
- Agusa, T.; Kunito, T.; Fujihara, J.; Kubota, R.; Minh, T.B.; Trang, P.T.K.; Iwata, H.; Subramanian, A.; Viet, P.H.; Tanabe, S. Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi, Vietnam. Environ. Pollut. 2006, 139, 95–106. [Google Scholar] [CrossRef] [PubMed]
- De Joode, B.V.W.; Barbeau, B.; Bouchard, M.F.; Mora, A.M.; Skytt, Å.; Córdoba, L.; Quesada, R.; Lundh, T.; Lindh, C.H.; Mergler, D. Manganese concentrations in drinking water from villages near banana plantations with aerial mancozeb spraying in Costa Rica: Results from the Infants’ Environmental Health Study (ISA). Environ. Pollut. 2016, 215, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, U.K.; Ramanathan, A.; Subramanian, V. Groundwater chemistry and human health risk assessment in the mining region of East Singhbhum, Jharkhand, India. Chemosphere 2018, 204, 501–513. [Google Scholar] [CrossRef]
- Pak, E. National Standards for Drinking Water Quality; Pakistan Environmental Protection Agency, (Ministry of Environment) Government of Pakistan: Islamabad, Pakistan, 2008. [Google Scholar]
- Chadha, D.; Tamta, S. Occurrence and origin of groundwater fluoride in phreatic zone of Unnao district, Uttar Pradesh. J. Appl. Geochem. 1999, 1, 21–26. [Google Scholar]
- McNeil, V.H.; Cox, M.E.; Preda, M. Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia. J. Hydrol. 2005, 310, 181–200. [Google Scholar] [CrossRef]
- Venkatramanan, S.; Chung, S.; Rajesh, R.; Lee, S.; Ramkumar, T.; Prasanna, M.V. Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: A case study of Dalcheon in Ulsan City, Korea. Environ. Sci. Pollut. Res. 2015, 22, 11209–11223. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Ma, H.; Wang, L.; Martín, J.D. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environ. Pollut. 2016, 218, 879–888. [Google Scholar] [CrossRef]
- Przydatek, G.; Kanownik, W. Physicochemical indicators of the influence of a lined municipal landfill on groundwater quality: A case study from Poland. Environ. Earth Sci. 2021, 80, 456. [Google Scholar] [CrossRef]
- Subba Rao, N.; Marghade, D.; Dinakar, A.; Chandana, I.; Sunitha, B.; Ravindra, B.; Balaji, T. Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environ. Earth Sci. 2017, 76, 747. [Google Scholar] [CrossRef]
- Raju, N.J.; Patel, P.; Gurung, D.; Ram, P.; Gossel, W.; Wycisk, P. Geochemical assessment of groundwater quality in the Dun valley of central Nepal using chemometric method and geochemical modeling. Groundw. Sustain. Dev. 2015, 1, 135–145. [Google Scholar] [CrossRef]
- Khan, K.; Lu, Y.; Khan, H.; Zakir, S.; Khan, S.; Khan, A.A.; Wei, L.; Wang, T. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. J. Environ. Sci. 2013, 25, 2003–2013. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K.; Dahiya, R.; Chandra, A. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 2006, 118, 435–456. [Google Scholar] [CrossRef] [PubMed]
- Tretiakova, I.; Borisenko, A.S.; Lebedev, V.I.; Pavlova, G.; Goverdovsky, V.; Travin, A. Cobalt mineralization in the Altai–Sayan orogen: Age and correlation with magmatism. Russ. Geol. Geophys. 2010, 51, 1078–1090. [Google Scholar] [CrossRef]
- Izah, S.C.; Chakrabarty, N.; Srivastav, A.L. A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures. Expo. Health 2016, 8, 285–304. [Google Scholar] [CrossRef]
- Olmedo, P.; Hernández, A.; Pla, A.; Femia, P.; Navas-Acien, A.; Gil, F. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem. Toxicol. 2013, 62, 299–307. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J. Hazard. Mater. 2021, 405, 124187. [Google Scholar] [CrossRef]
- Egwu, O.C.; Victor, U.C.; Casmir, U.C.; Sa’adat, U.; Chibueze, N.C.; Musa, A. Toxicity impact on bioaccumulation of potentially toxic elements in african giant land snail (Archachatina margenata) treated with different soils and Its Ecological Risk Assessment. Asian J. Res. Biochem. 2019, 4, 1–15. [Google Scholar] [CrossRef]
Statistic | Shallow Water (n = 24) | Mid–Depth Water (n = 14) | Deep Water (n = 12) | Mine Water (n = 7) | WHO Limit | ||||
---|---|---|---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | ||
pH | 7.2–8.3 | 7.6 ± 0.3 | 7.0–8.1 | 7.4 ± 0.3 | 7.2–8.1 | 7.5 ± 0.2 | 7.6–8.2 | 7.9 ± 0.2 | 6.5–9.2 |
EC µS/cm | 212–1288 | 738.9 ± 263.0 | 333–1030 | 674.2 ± 212.1 | 469–1121 | 729.2 ± 217.7 | 1650–1850 | 1801.8 ± 69.3 | 400 |
Temp °C | 24.5–26.6 | 25.7 ± 0.6 | 24.6–27.2 | 25.6 ± 0.6 | 24.5–26.2 | 25.5 ± 0.5 | 24.1–27.8 | 26.0 ± 1.3 | - |
Depth m | 25.0–40.0 | 35.5 ± 4.3 | 41.0–80.0 | 56.2 ± 13.0 | 85.0–115.0 | 97.5 ± 9.4 | 24.0–35.0 | 28.7 ± 4.2 | - |
TDS mg/L | 210–800 | 462.3 ± 156.8 | 210–635 | 412.9 ± 126.9 | 300–680 | 450.0 ± 127.8 | 1050–1280 | 1125.7 ± 96.4 | 1000 |
Ca mg/L | 27–100 | 40.8 ± 15.4 | 34.0–85.0 | 54.8 ± 15.9 | 28.0–120.0 | 66.8 ± 31.0 | 20.0–29.0 | 24.7 ± 3.0 | 100 |
Mg mg/L | 15.0–33.0 | 25.4 ± 4.3 | 18.0–37.0 | 29.5 ± 5.8 | 18.0–45.0 | 28.6 ± 8.4 | 10.0–21.0 | 15.1 ± 3.4 | 50 |
K mg/L | 4.5–18.9 | 9.0 ± 2.9 | 4.5–10.8 | 8.3 ± 2.5 | 0.9–10.8 | 6.1 ± 3.4 | 1.8–12.0 | 5.7 ± 3.9 | 12 |
Na mg/L | 55–350 | 162.3 ± 63.0 | 45.0–170.0 | 94.3 ± 42.4 | 22.0–150.0 | 86.3 ± 44.8 | 335–410 | 367.1 ± 25.1 | 200 |
HCO3 mg/L | 210–850 | 307.3 ± 123.8 | 180–335 | 259.3 ± 52.9 | 190–330 | 263.3 ± 45.2 | 610–680 | 651.4 ± 27.9 | 500 |
Cl mg/L | 80–150 | 114.2 ± 20.2 | 55.0–145.0 | 96.1 ± 20.9 | 80.0–135.0 | 103.8 ± 16.3 | 80–120 | 94.3 ± 15.4 | 250 |
SO4 mg/L | 115–241 | 165.2 ± 34.4 | 89.3–236.3 | 151.9 ± 36.3 | 78.8–152.3 | 128.3 ± 23.1 | 325–350 | 337.0 ± 8.8 | 500 |
Ni mg/L | 0.05–0.53 | 0.25 ± 0.14 | 0.04–0.54 | 0.22 ± 0.14 | 0.03–0.40 | 0.18 ± 0.13 | 0.32–0.52 | 0.41 ± 0.08 | 3.0 |
Mn mg/L | 0.06–0.50 | 0.31 ± 0.13 | 0.08–0.50 | 0.24 ± 0.16 | 0.08–0.35 | 0.23 ± 0.10 | 0.65–1.58 | 1.15 ± 0.33 | 0.5 |
Cr mg/L | 0.03–0.15 | 0.09 ± 0.04 | 0.03–0.17 | 0.07 ± 0.01 | 0.01–0.08 | 0.04 ± 0.02 | 0.19–0.30 | 0.24 ± 0.04 | 0.05 |
Cu mg/L | 0.03–1.90 | 0.47 ± 0.45 | 0.03–0.45 | 0.15 ± 0.12 | 0.01–0.24 | 0.11 ± 0.08 | 1.20–2.25 | 1.50 ± 0.40 | 2.0 |
Cd mg/L | 0.01–0.31 | 0.07 ± 0.08 | 0.01–0.23 | 0.07 ± 0.02 | 0.01–0.06 | 0.04 ± 0.01 | 0.35–0.48 | 0.41 ± 0.05 | 0.05 |
Pb mg/L | 0.01–0.20 | 0.07 ± 0.06 | 0.01–0.16 | 0.07 ± 0.02 | 0.01–0.04 | 0.02 ± 0.01 | 0.25–0.58 | 0.43 ± 0.12 | 0.01 |
Co mg/L | 0.01–0.24 | 0.07 ± 0.06 | 0.03–0.23 | 0.09 ± 0.03 | 0.03–0.21 | 0.08 ± 0.05 | 0.24–0.52 | 0.40 ± 0.10 | 0.04 |
Fe mg/L | 0.23–1.34 | 0.86 ± 0.38 | 0.24–1.56 | 0.70 ± 0.51 | 0.11–0.31 | 0.23 ± 0.07 | 2.10–2.85 | 2.52 ± 0.29 | 0.3 |
Zn mg/L | 0.11–0.65 | 0.23 ± 0.13 | 0.12–0.37 | 0.22 ± 0.07 | 0.12–0.35 | 0.25 ± 0.06 | 0.45–0.90 | 0.70 ± 0.15 | 3.0 |
Statistics | Groundwater (n = 50) | Mines Water (n = 7) | ||
---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | |
H+ | 1.0 × 10−4–1.15 ×10−4 | 1.0 × 10−4 ± 1.0 × 10−6 | 1.0 × 10−4–1.0 × 10−4 | 1.0 × 10−4 ± 1.0 × 10−6 |
HO− | 1.0 × 10−4–1.05 × 10−4 | 1.0 × 10−4 ± 9.0 × 10−7 | 1.0 × 10−4–1.0 × 10−4 | 1.0 × 10−4 ± 2.0 × 10−7 |
Ni2+ | 3.0 × 10−2–5.0 × 10−1 | 2.0 × 10−1 ± 1.0 × 10−2 | 3.0 × 10−2–5.0 × 10−2 | 4.0 × 10−2 ± 3.0 × 10−2 |
Mn2+ | 6.0 × 10−2–5.0 × 10−1 | 3.0 × 10−1 ± 1.0 × 10−2 | 6.0 × 10−3–3.0 × 10−2 | 1.0 × 10−3 ± 2.0 × 10−4 |
Mn3+ | 2.0 × 10−23–1.94 × 10−22 | 1.0 × 10−22 ± 5.0 × 10−23 | 3.0 × 10−22–6.0 × 10−22 | 5.0 × 10−22 ± 1.0 × 10−22 |
Cr3+ | 7.0 × 10−7–7.12 × 10−6 | 4.0 × 10−6 ± 2.0 × 10−8 | 8.0 × 10−6–1.0 × 10−5 | 9.0 × 10−6 ± 1.0 × 10−6 |
Cr6+ | 8.0 × 10−12–8.06 × 10−11 | 4.0 × 10−11 ± 2.0 × 10−10 | 8.0 × 10−11–1.0 × 10−10 | 9.0 × 10−11 ± 1.0 × 10−11 |
Cu1+ | 3.0 × 10−4–5.63 × 10−2 | 9.0 × 10−3 ± 1.0 × 10−2 | 3.0 × 10−3–6.0 × 10−2 | 4.0 × 10−4 ± 1.0 × 10−2 |
Cu2+ | 7.0 × 10−3–1.30 × 10−2 | 2.0 × 10−1 ± 2.0 × 10−3 | 8.0 × 10−4–6.0 × 10−4 | 1.0 × 10−3 ± 3.0 × 10−4 |
Cd2+ | 1.0 × 10−2–3.0 × 10−1 | 7.0 × 10−2 ± 6.0 × 10−3 | 3.0 × 10−4–2.0 × 10−4 | 4.0 × 10−4 ± 2.0 × 10−4 |
Pb2+ | 8.0 × 10−3–2.0 × 10−2 | 5.0 × 10−2 ± 1.0 × 10−2 | 2.0 × 10−4–1.0 × 10−4 | 4.0 × 10−3 ± 8.0 × 10−2 |
Pb4+ | 1.0 × 10−2–1.0 × 10−1 | 2.0 × 10−1 ± 2.0 × 10−3 | 2.0 × 10−2–2.0 × 10−1 | 5 × 10−2 ± 6.0 × 10−3 |
Co2+ | 7.0 × 10−3–2.0 × 10−2 | 6.0 × 10−2 ± 4.0 × 10−2 | 2.0 × 10−4–4.0 × 10−3 | 3.0 × 10−3 ± 6.0 × 10−2 |
Co3+ | 9.0 × 10−32–2.3 × 10−30 | 8.0 × 10−31 ± 6.0 × 10−31 | 3.0 × 10−30–6.0 × 10−29 | 5.0 × 10−30 ± 1.0 × 10−30 |
Fe2+ | 6.0 × 10−2–2.0 × 10−1 | 3.0 × 10−1 ± 2.0 × 10−3 | 2.0 × 10−3–1.5 × 10−3 | 4.0 × 10−3 ± 1.0 × 10−4 |
Fe3+ | 7.0 × 10−11–1.05 × 10−9 | 4.0 × 10−10 ± 3.0 × 10−10 | 2.0 × 10−9–3.0 × 10−9 | 2.0 × 10−9 ± 3.0 × 10−10 |
Zn2+ | 6.0 × 10−2–2.0 × 10−1 | 2.0 × 10−1 ± 1.0 × 10−1 | 4 × 10−3–1.0 × 10−2 | 8.0 × 10- ± 2.0 × 10−4 |
Statistic | Groundwater (n = 50) | Mines Water (n = 7) | Formula | ||
---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | ||
Bunsenite | −3.06–1.84 | −2.3 ± 0.308 | −2.2–2.0 | −2.09 ± 0.07 | NiO |
Ni (OH)2 | −3.35–2.12 | −2.6 ± 0.308 | −2.5–2.28 | −2.37 ± 0.06 | Ni (OH)2 |
Trevorite | 15.43–18.16 | 17.0 ± 0.803 | 18.3–18.6 | 18.5 ± 0.11 | NiFe3+2O4 |
Birnessite | −60.2–52.9 | −56.0 ± 2.038 | −53.0–50.4 | −51.4 ± 0.71 | MnO2 |
Bixbyite | −8.79–6.97 | −7.7 ± 0.509 | −6.9–6.33 | −6.59 ± 0.18 | Mn2O3 |
Hausmannite | −10.2–7.47 | −8.5 ± 0.763 | −7.4–6.51 | −6.91 ± 0.27 | Mn3O4 |
Manganite | −4.71–3.8 | −4.2 ± 0.254 | −3.8–3.48 | −3.62 ± 0.09 | MnOOH |
Manganosite | −8.22–7.31 | −7.7 ± 0.255 | −7.3–6.99 | −7.13 ± 0.1 | MnO |
Pyrolusite | −9.87–8.96 | −9.3 ± 0.255 | −8.9–8.64 | −8.77 ± 0.09 | MnO2 |
Todorokite | −48.2–14.8 | −44 ± 4.52 | −42–39.6 | −40.5 ± 0.63 | (Mn2+, Ca, Na, K)(Mn4+, Mn2+, Mg)6O12·3H2O |
Chromite | 18.1–20.75 | 19.8 ± 0.595 | 20.8–21.2 | 21.0 ± 0.11 | FeCr2O4 |
Eskolaite | 15.63–17.58 | 17 ± 0.365 | 17.4–17.7 | 17.5 ± 0.1 | Cr2O3 |
CuCr2O4 | 16.48–19.21 | 18.3 ± 0.616 | 19.6–20.0 | 19.8 ± 0.11 | CuCr2O4 |
Cuprite | 2.86–7.33 | 5.38 ± 0.943 | 6.87–7.4 | 7.06 ± 0.18 | Cu2O |
Delafossite | 14.59–17.75 | 16.5 ± 0.674 | 17.8–18.1 | 17.9 ± 0.1 | CuFeO2 |
Ferrite-Cu | 13.82–17.89 | 16.3 ± 0.957 | 18.3–18.6 | 18.4 ± 0.13 | CuFe2O4 |
Tenorite | 1.09–3.33 | 2.34 ± 0.463 | 3.09–3.36 | 3.19 ± 0.09 | CuO |
Monteponite | −6.2–4.72 | −5.5 ± 0.363 | −4.8–4.63 | −4.69 ± 0.05 | CdO |
Crocoite | −6.27–4.59 | −5.5 ± 0.55 | −4.5–4.16 | −4.29 ± 0.13 | PbCrO4 |
Litharge | −3.97–2.53 | −3.3 ± 0.471 | −2.5–2.16 | −2.3 ± 0.1 | PbO |
Massicot | −4.01–2.18 | −3.5 ± 0.491 | −2.7–2.34 | −2.48 ± 0.1 | PbO |
Minium | −26–21.1 | −23.0 ± 1.426 | −21–20 | −20.4 ± 0.31 | Pb3O4 |
Plattnerite | −18.4–17.1 | −18 ± 0.465 | −17.0–16.7 | −16.9 ± 0.1 | PbO2 |
Spinel-Co | −11.4–7.15 | −8.9 ± 1.071 | −7.3–6.39 | −6.75 ± 0.28 | Co-MgAl2O4 |
Goethite | −9.84–8.25 | 7.42 ± 2.512 | 8.35–8.5 | 8.41 ± 0.05 | FeO(OH) |
Hematite | 15.22–17.49 | 16.5 ± 0.67 | 17.6–17.9 | 17.8 ± 0.1 | Fe2O3 |
Magnetite | 14.54–17.94 | 16.5 ± 1.006 | −19.0–18.5 | 9.16 ± 17.0 | Fe3O4 |
Wustite | −3.47–2.39 | −2.8 ± 0.317 | −2.3–2.21 | −2.26 ± 0.03 | FeO |
Ferrite-Zn | 13.89–16.23 | 15.1 ± 0.696 | 16.7–17.0 | 16.8 ± 0.09 | ZnFe2O4 |
Zincite | −1.27–0.52 | −1.0 ± 0.166 | −0.7–0.42 | −0.52 ± 0.1 | ZnO |
ZnCr2O4 | 25.74–27.61 | 26.9 ± 0.393 | 27.7–28.2 | 27.9 ± 0.17 | ZnCr2O4 |
T. Hydrogen | 111.0–111.2 | 111.0 ± 0.004 | 111.0–111.5 | 111.0 ± 0.04 | |
T. Oxygen | 55.53–55.83 | 55.5 ± 0.044 | 55.5–55.6 | 55.5 ± 0.02 | |
Ionic strength | 0.001–0.007 | 0.005 ± 0.001 | 0.01–0.02 | 0.02 ± 0.01 |
Non-Cancer Risk in Children | Non-Cancer Risk in Male | Non-Cancer Risk in Female | ||||
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
Mn | 0.044–1.25 | 0.3 ± 0.2647 | 0.018–0.52 | 0.125 ± 0.11 | 0.019–0.55 | 0.13 ± 0.115 |
Cu | 0.03–6.76 | 1.301 ± 1.5718 | 0.012–2.81 | 0.552 ± 0.673 | 0.013–2.94 | 0.58 ± 0.706 |
Co | 0.102–9.63 | 2.178 ± 2.2921 | 0.042–4.0 | 0.905 ± 0.952 | 0.044–4.19 | 0.95 ± 0.998 |
Fe | 2 × 10−5–0.002 | 1 × 10−4 ± 0.0001 | 7 × 10−6–0.001 | 6 × 10−5 ± 5 × 10−5 | 8 × 10−6–0.005 | 0.002 ± 5 × 10−5 |
Zn | 0.041–0.3 | 0.106 ± 0.0666 | 0.017–0.14 | 0.044 ± 0.029 | 0.018–0.15 | 0.05 ± 0.03 |
THI | 0.217–17.9 | 3.885 ± 4.1953 | 0.09–7.47 | 1.626 ± 1.764 | 0.094–7.83 | 1.7 ± 1.85 |
Cancer Risk in Children | Cancer Risk in Male | Cancer Risk in Female | ||||
Ni | 1 × 10−7–0.05 | 0.024 ± 0.0149 | 0.001–0.02 | 0.011 ± 0.006 | 0.001–0.02 | 0.01 ± 0.006 |
Cr | 6 × 10−4–0.02 | 0.005 ± 0.0039 | 2 × 10−4–0.01 | 0.002 ± 0.001 | 2 × 10−4–0.01 | 2 × 10−1 ± 0.002 |
Cd | 0.017–0.8 | 0.176 ± 0.2146 | 0.007–0.33 | 0.074 ± 0.09 | 0.007–0.35 | 0.08 ± 0.095 |
Pb | 0.009–0.55 | 0.093 ± 0.1297 | 0.004–0.23 | 0.04 ± 0.054 | 0.004–0.24 | 0.04 ± 0.057 |
THI | 0.027–1.42 | 0.298 ± 0.3631 | 0.013–0.59 | 0.126 ± 0.152 | 0.013–0.62 | 0.13 ± 0.16 |
Statistic | Shallow Groundwater (n = 24) | Mid-Depth Water (n = 14) | Deep Groundwater (n = 12) | Mines Water (n = 7) | ||||
---|---|---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
pH | 0.85–0.98 | 0.9 ± 0.03 | 0.824–0.95 | 0.87 ± 0.04 | 0.847–0.95 | 0.89 ± 0.03 | 0.89–0.96 | 0.93 ± 0.02 |
EC | 0.53–3.22 | 1.85 ± 0.66 | 0.833–2.58 | 1.69 ± 0.53 | 1.174–2.8 | 1.82 ± 0.54 | 4.13–4.63 | 4.5 ± 0.17 |
TDS | 0.21–0.8 | 0.46 ± 0.16 | 0.21–0.64 | 0.41 ± 0.13 | 0.3–0.68 | 0.45 ± 0.13 | 1.05–1.28 | 1.13 ± 0.1 |
Ca | 0.27–1.0 | 0.41 ± 0.15 | 0.34–0.85 | 0.55 ± 0.16 | 0.28–1.2 | 0.67 ± 0.31 | 0.2–0.29 | 0.25 ± 0.03 |
Mg | 0.3–0.66 | 0.51 ± 0.09 | 0.36–0.74 | 0.59 ± 0.12 | 0.36–0.9 | 0.57 ± 0.17 | 0.2–0.42 | 0.3 ± 0.07 |
K | 0.38–1.58 | 0.75 ± 0.25 | 0.37–0.9 | 0.69 ± 0.21 | 0.075–0.9 | 0.51 ± 0.29 | 0.15–1.0 | 0.48 ± 0.32 |
Na | 0.28–1.75 | 0.81 ± 0.32 | 0.22–0.85 | 0.47 ± 0.21 | 0.11–0.75 | 0.43 ± 0.22 | 1.68–2.05 | 1.84 ± 0.13 |
HCO3 | 0.7–2.83 | 1.02 ± 0.41 | 0.6.0–1.12 | 0.86 ± 0.18 | 0.63–1.1 | 0.88 ± 0.15 | 2.03–2.27 | 2.17 ± 0.09 |
Cl | 0.32–0.6 | 0.46 ± 0.08 | 0.22–0.58 | 0.38 ± 0.08 | 0.32–0.54 | 0.42 ± 0.07 | 0.32–0.48 | 0.38 ± 0.06 |
SO4 | 0.23–0.48 | 0.33 ± 0.07 | 0.17–0.47 | 0.3 ± 0.07 | 0.16–0.3 | 0.26 ± 0.05 | 0.65–0.7 | 0.67 ± 0.02 |
Ni | 0.02–0.18 | 0.08 ± 0.05 | 0.01–0.18 | 0.07 ± 0.05 | 0.01–0.13 | 0.06 ± 0.04 | 0.11–0.17 | 0.14 ± 0.03 |
Mn | 0.11–1.0 | 0.62 ± 0.26 | 0.16–1.0 | 0.49 ± 0.31 | 0.16–0.7 | 0.45 ± 0.19 | 1.3–3.16 | 2.29 ± 0.65 |
Cr | 0.32–0.6 | 0.46 ± 0.08 | 0.22–0.58 | 0.38 ± 0.08 | 0.32–0.54 | 0.42 ± 0.07 | 0.32–0.48 | 0.38 ± 0.06 |
Cu | 0.02–0.95 | 0.24 ± 0.23 | 0.01–0.23 | 0.07 ± 0.06 | 0.01–0.12 | 0.06 ± 0.04 | 0.6–1.13 | 0.75 ± 0.2 |
Cd | 0.2–6.2 | 1.49 ± 1.51 | 0.22–4.6 | 1.4 ± 1.32 | 0.2–1.2 | 0.72 ± 0.29 | 7.0–9.6 | 8.2 ± 1.01 |
Pb | 1.0–20.0 | 6.88 ± 6.04 | 1.0–16.1 | 7.09 ± 5.61 | 1.0–4.0 | 1.75 ± 1.06 | 25.0–58.0 | 42.6 ± 12.3 |
Co | 0.14–6.0 | 1.78 ± 1.48 | 0.75–5.75 | 2.29 ± 1.39 | 0.75–5.25 | 1.88 ± 1.36 | 6.0–13.0 | 10.0 ± 2.45 |
Fe | 0.77–4.47 | 2.88 ± 1.25 | 0.8–5.2 | 2.35 ± 1.69 | 0.37–1.03 | 0.78 ± 0.22 | 7–9.5.0 | 8.4 ± 0.97 |
Zn | 0.04–0.22 | 0.08 ± 0.04 | 0.04–0.12 | 0.07 ± 0.02 | 0.04–0.12 | 0.08 ± 0.02 | 0.15–0.3 | 0.23 ± 0.05 |
Groundwater (n = 50) | Mines Water (n = 7) | |||||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | |
pH | 0.658 | −0.273 | −0.359 | 0.579 | 0.577 | 0.700 |
EC | 0.561 | −0.623 | 0.071 | 0.643 | −0.436 | 0.192 |
Temp | 0.367 | 0.062 | −0.152 | 0.175 | 0.764 | 0.602 |
Depth | −0.652 | −0.521 | −0.140 | −0.409 | −0.694 | 0.297 |
TDS | 0.585 | −0.613 | 0.096 | 0.594 | −0.032 | −0.031 |
Ca | −0.648 | 0.090 | −0.218 | −0.540 | −0.696 | 0.049 |
Mg | −0.512 | 0.098 | 0.230 | −0.588 | −0.535 | 0.402 |
K | 0.390 | 0.168 | 0.260 | 0.932 | −0.037 | −0.210 |
Na | 0.883 | −0.214 | 0.016 | 0.733 | 0.579 | −0.332 |
HCO3 | 0.623 | −0.354 | −0.392 | 0.452 | 0.765 | −0.562 |
Cl | 0.288 | −0.048 | 0.714 | 0.921 | 0.272 | −0.010 |
SO4 | 0.762 | −0.012 | 0.069 | 0.842 | −0.122 | −0.500 |
Ni | 0.107 | 0.547 | −0.527 | 0.923 | −0.249 | −0.143 |
Mn | 0.523 | 0.358 | 0.203 | 0.892 | −0.345 | 0.265 |
Cr | 0.205 | 0.734 | −0.254 | 0.633 | −0.098 | 0.718 |
Cu | 0.291 | 0.515 | 0.077 | −0.296 | 0.498 | −0.040 |
Cd | 0.541 | 0.220 | −0.054 | 0.418 | 0.464 | 0.751 |
Pb | 0.520 | 0.408 | −0.210 | 0.642 | −0.735 | 0.193 |
Co | −0.210 | −0.069 | 0.586 | 0.714 | −0.609 | 0.023 |
Fe | 0.477 | 0.671 | 0.285 | 0.873 | −0.255 | −0.124 |
Zn | 0.101 | 0.010 | 0.037 | −0.052 | 0.871 | 0.113 |
Eigenvalue | 4.952 | 2.985 | 1.826 | 6.137 | 3.285 | 2.012 |
Variability (%) | 40.285 | 23.526 | 16.412 | 43.482 | 25.936 | 16.034 |
Cumulative % | 40.285 | 63.811 | 80.223 | 43.482 | 69.418 | 85.452 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, A.; Ayub, M.; Ullah, Z.; Ali, A.; Khattak, S.A.; Ali, L.; Gao, X.; Li, C.; Khan, S.; El-Serehy, H.A.; et al. Geochemical Modeling Source Provenance, Public Health Exposure, and Evaluating Potentially Harmful Elements in Groundwater: Statistical and Human Health Risk Assessment (HHRA). Int. J. Environ. Res. Public Health 2022, 19, 6472. https://doi.org/10.3390/ijerph19116472
Rashid A, Ayub M, Ullah Z, Ali A, Khattak SA, Ali L, Gao X, Li C, Khan S, El-Serehy HA, et al. Geochemical Modeling Source Provenance, Public Health Exposure, and Evaluating Potentially Harmful Elements in Groundwater: Statistical and Human Health Risk Assessment (HHRA). International Journal of Environmental Research and Public Health. 2022; 19(11):6472. https://doi.org/10.3390/ijerph19116472
Chicago/Turabian StyleRashid, Abdur, Muhammad Ayub, Zahid Ullah, Asmat Ali, Seema Anjum Khattak, Liaqat Ali, Xubo Gao, Chengcheng Li, Sardar Khan, Hamed A. El-Serehy, and et al. 2022. "Geochemical Modeling Source Provenance, Public Health Exposure, and Evaluating Potentially Harmful Elements in Groundwater: Statistical and Human Health Risk Assessment (HHRA)" International Journal of Environmental Research and Public Health 19, no. 11: 6472. https://doi.org/10.3390/ijerph19116472