Changes in Novel Anthropometric Indices of Abdominal Obesity during Weight Loss with Selected Obesity-Associated Single-Nucleotide Polymorphisms: A Small One-Year Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Test Group
2.2. Weight Loss Intervention
2.3. Outcome Measurements
2.4. Anthropometric Indices
- (1)
- BMI = ; unit: kg/m2 [44].
- BMI ranges: underweight < 18.5 kg/m2; normal weight 18.5–24.9 kg/m2; overweight 25.0–29.9 kg/m2; obesity class I 30.0–34.9 kg/m2; obesity class II 35.0–39.9 kg/m2; obesity class III ≥ 40.0 kg/m2 [44].
- (2)
- FMI = ; unit: kg/m2 [45].
- FMI ranges for males: fat deficit < 3.0 kg/m2; normal 3.0–6.0 kg/m2; excess fat > 6.0–9.0 kg/m2; obesity class I > 9.0–12.0 kg/m2; obesity class II > 12.0–15.0 kg/m2; obesity class III > 15.0 kg/m2.
- FMI ranges for females: fat deficit < 5.0 kg/m2; normal 5.0–9.0 kg/m2; excess fat > 9.0–13.0 kg/m2; obesity class I > 13.0–17.0 kg/m2; obesity class II > 17.0–21.0 kg/m2; obesity class III > 21.0 kg/m2.
- (3)
- ABSI = ; no unit [46]
- The proposed ABSI cut-off points in the diagnosis of metabolic disorders are 0.080 for males and 0.076 for females [47].
- (4)
- VAI; no unit [48].Males: VAI =Females: VAI =The proposed VAI cut-off points identify a visceral adipose dysfunction (VAD) associated with cardiometabolic risk:
- Adults < 30 years old: VAD absent ≤ 2.52; mild VAD 2.53–2.58; moderate VAD 2.59–2.73; severe VAD > 2.73.
- Adults 30–41 years old: VAD absent ≤ 2.23; mild VAD 2.24–2.53; moderate VAD 2.54–3.12; severe VAD > 3.12.
- Adults 42–51 years old: VAD absent ≤ 1.92; mild VAD 1.93–2.16; moderate VAD 2.17–2.77; severe VAD > 2.77 [49].
- (5)
- RFM = 64 − (20 + 12 gender (0 for males, 1 for females); unit: % [50].
- The proposed RFM cut-off points to diagnose obesity and identify patients at higher risk of mortality are 30.0% for males and 40.0% for females [51].
- (6)
- BRI = 364.2 – 365.5 ; no unit [17].
- The suggested BRI cut-off points to diagnose metabolic syndrome are 5.69 for males and 5.77 for females [52].
- (7)
- CI = ; unit: m3/2/kg1/2 [53].
- The suggested CI cut-off points to diagnose obesity and metabolic abnormalities are 1.200 for males and 1.180 for females [54].
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 11 August 2022).
- Goodarzi, M.O. Genetics of Obesity: What Genetic Association Studies Have Taught Us about the Biology of Obesity and Its Complications. Lancet Diabetes Endocrinol. 2018, 6, 223–236. [Google Scholar] [CrossRef]
- LeBlanc, E.S.; Patnode, C.D.; Webber, E.M.; Redmond, N.; Rushkin, M.; O’Connor, E.A. Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 320, 1172–1191. [Google Scholar] [CrossRef] [PubMed]
- Durrer Schutz, D.; Busetto, L.; Dicker, D.; Farpour-Lambert, N.; Pryke, R.; Toplak, H.; Widmer, D.; Yumuk, V.; Schutz, Y. European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obes. Facts 2019, 12, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Marques, M.M. Health Behavior Change for Obesity Management. Obes. Facts 2017, 10, 666–673. [Google Scholar] [CrossRef]
- Kahan, S. Overweight and Obesity Management Strategies. Am. J. Manag. Care 2016, 22, s186–s196. [Google Scholar]
- Naureen, Z.; Miggiano, G.A.D.; Aquilanti, B.; Velluti, V.; Matera, G.; Gagliardi, L.; Zulian, A.; Romanelli, R.; Bertelli, M. Genetic Test for the Prescription of Diets in Support of Physical Activity. Acta Bio-Med. Atenei Parm. 2020, 91, e2020011. [Google Scholar] [CrossRef]
- Camp, K.M.; Trujillo, E. Position of the Academy of Nutrition and Dietetics: Nutritional Genomics. J. Acad. Nutr. Diet. 2014, 114, 299–312. [Google Scholar] [CrossRef]
- Matusheski, N.V.; Caffrey, A.; Christensen, L.; Mezgec, S.; Surendran, S.; Hjorth, M.F.; McNulty, H.; Pentieva, K.; Roager, H.M.; Seljak, B.K.; et al. Diets, Nutrients, Genes and the Microbiome: Recent Advances in Personalised Nutrition. Br. J. Nutr. 2021, 126, 1489–1497. [Google Scholar] [CrossRef]
- Memarian, E.; Nilsson, P.M.; Zia, I.; Christensson, A.; Engström, G. The Risk of Chronic Kidney Disease in Relation to Anthropometric Measures of Obesity: A Swedish Cohort Study. BMC Nephrol. 2021, 22, 330. [Google Scholar] [CrossRef]
- O’Neill, D. Measuring Obesity in the Absence of a Gold Standard. Econ. Hum. Biol. 2015, 17, 116–128. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Peterson, C.M.; Thomas, D.M.; Heo, M.; Schuna, J.M.; Hong, S.; Choi, W. Scaling of Adult Body Weight to Height across Sex and Race/Ethnic Groups: Relevance to BMI1234. Am. J. Clin. Nutr. 2014, 100, 1455–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, P.; Seidell, J.C.; Meinders, A.E. The value and limitations of the body mass index (BMI) in the assessment of the health risks of overweight and obesity. Ned. Tijdschr. Geneeskd. 2004, 148, 2379–2382. [Google Scholar] [PubMed]
- Sharma, A.M.; Kushner, R.F. A Proposed Clinical Staging System for Obesity. Int. J. Obes. 2009, 33, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, A.J.; Hunger, J.M.; Nguyen-Cuu, J.; Wells, C. Misclassification of Cardiometabolic Health When Using Body Mass Index Categories in NHANES 2005–2012. Int. J. Obes. 2016, 40, 883–886. [Google Scholar] [CrossRef]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22, 1–203. [Google Scholar] [CrossRef]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E.; et al. Relationships between Body Roundness with Body Fat and Visceral Adipose Tissue Emerging from a New Geometrical Model. Obes. Silver Spring Md. 2013, 21, 2264–2271. [Google Scholar] [CrossRef]
- Yang, H.I.; Cho, W.; Ahn, K.Y.; Shin, S.-C.; Kim, J.-H.; Yoo, S.; Park, Y.-I.; Lee, E.-Y.; Lee, D.H.; Spence, J.C.; et al. A New Anthropometric Index to Predict Percent Body Fat in Young Adults. Public Health Nutr. 2020, 23, 1507–1514. [Google Scholar] [CrossRef]
- Uzdil, Z.; Kaya, S.; Sökülmez Kaya, P.; Terzi, M.; Dünder, E. The Effectiveness of New Adiposity Indices on Plasma Lipid Profile in Patients with Multiple Sclerosis: A Cross-Sectional Study with A Body Shape Index, Body Roundness Index, and Visceral Adiposity Index. Mult. Scler. Relat. Disord. 2020, 43, 102214. [Google Scholar] [CrossRef] [PubMed]
- Nkwana, M.R.; Monyeki, K.D.; Lebelo, S.L. Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults. Int. J. Environ. Res. Public. Health 2021, 18, 281. [Google Scholar] [CrossRef]
- Wong, J.C.; O’Neill, S.; Beck, B.R.; Forwood, M.R.; Khoo, S.K. Comparison of Obesity and Metabolic Syndrome Prevalence Using Fat Mass Index, Body Mass Index and Percentage Body Fat. PLoS ONE 2021, 16, e0245436. [Google Scholar] [CrossRef]
- Dhana, K.; Kavousi, M.; Ikram, M.A.; Tiemeier, H.W.; Hofman, A.; Franco, O.H. Body Shape Index in Comparison with Other Anthropometric Measures in Prediction of Total and Cause-Specific Mortality. J. Epidemiol. Commun. Health 2016, 70, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Vizzuso, S.; Del Torto, A.; Dilillo, D.; Calcaterra, V.; Di Profio, E.; Leone, A.; Gilardini, L.; Bertoli, S.; Battezzati, A.; Zuccotti, G.V.; et al. Visceral Adiposity Index (VAI) in Children and Adolescents with Obesity: No Association with Daily Energy Intake but Promising Tool to Identify Metabolic Syndrome (MetS). Nutrients 2021, 13, 413. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, A.; Revilla, L.; Lopez, T.; Sanchez, S.E.; Williams, M.A.; Gelaye, B. Using A Body Shape Index (ABSI) and Body Roundness Index (BRI) to Predict Risk of Metabolic Syndrome in Peruvian Adults. J. Int. Med. Res. 2020, 48, 300060519848854. [Google Scholar] [CrossRef] [PubMed]
- Bonikowske, A.R.; Barillas Lara, M.I.; Koepp, K.E.; Medina Inojosa, J.R.; Squires, R.W.; Lopez-Jimenez, F.; Olson, T.P. Fat Mass Index Better Identifies Metabolic Syndrome: Insights from Patients in Early Outpatient Cardiac Rehabilitation. J. Clin. Med. 2019, 8, 2147. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Liu, X.; Xue, H.; Wang, Y.; Shi, Z. Comparisons of Visceral Adiposity Index, Body Shape Index, Body Mass Index and Waist Circumference and Their Associations with Diabetes Mellitus in Adults. Nutrients 2019, 11, 1580. [Google Scholar] [CrossRef]
- Calderón-García, J.F.; Roncero-Martín, R.; Rico-Martín, S.; De Nicolás-Jiménez, J.M.; López-Espuela, F.; Santano-Mogena, E.; Alfageme-García, P.; Sánchez Muñoz-Torrero, J.F. Effectiveness of Body Roundness Index (BRI) and a Body Shape Index (ABSI) in Predicting Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public. Health 2021, 18, 11607. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, S.; Yu, S.; Chi, C.; Ji, H.; Xiong, J.; Teliewubai, J.; Fan, X.; Maimaitiaili, R.; Xu, Y.; et al. Association between Hypertension-Mediated Organ Damage and Obesity Defined by Novel Anthropometric Indices in Community-Dwelling Elderly Individuals. Clin. Nutr. Edinb. Scotl. 2021, 40, 4473–4480. [Google Scholar] [CrossRef]
- Gomez-Peralta, F.; Abreu, C.; Cruz-Bravo, M.; Alcarria, E.; Gutierrez-Buey, G.; Krakauer, N.Y.; Krakauer, J.C. Relationship between “a Body Shape Index (ABSI)” and Body Composition in Obese Patients with Type 2 Diabetes. Diabetol. Metab. Syndr. 2018, 10, 21. [Google Scholar] [CrossRef]
- Tsou, M.-T.; Chang, Y.-C.; Hsu, C.-P.; Kuo, Y.-C.; Yun, C.-H.; Huang, W.-H.; Hu, K.-C.; Liu, C.-Y.; Chen, Y.-J.; Sung, K.-T.; et al. Visceral Adiposity Index Outperforms Conventional Anthropometric Assessments as Predictor of Diabetes Mellitus in Elderly Chinese: A Population-Based Study. Nutr. Metab. 2021, 18, 87. [Google Scholar] [CrossRef]
- Dong, Y.; Bai, L.; Cai, R.; Zhou, J.; Ding, W. Visceral Adiposity Index Performed Better than Traditional Adiposity Indicators in Predicting Unhealthy Metabolic Phenotype among Chinese Children and Adolescents. Sci. Rep. 2021, 11, 23850. [Google Scholar] [CrossRef]
- Bray, G.A.; Greenway, F.L.; Molitch, M.E.; Dahms, W.T.; Atkinson, R.L.; Hamilton, K. Use of Anthropometric Measures to Assess Weight Loss. Am. J. Clin. Nutr. 1978, 31, 769–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabshahi, S.; van der Pols, J.C.; Williams, G.M.; Marks, G.C.; Lahmann, P.H. Diet Quality and Change in Anthropometric Measures: 15-Year Longitudinal Study in Australian Adults. Br. J. Nutr. 2012, 107, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Hinney, A.; Hebebrand, J. Polygenic Obesity in Humans. Obes. Facts 2008, 1, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, Y.; Sun, B.-F.; Zhao, Y.-L.; Yang, Y.-G. FTO and Obesity: Mechanisms of Association. Curr. Diab. Rep. 2014, 14, 486. [Google Scholar] [CrossRef] [PubMed]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-Analysis of Genome-Wide Association Studies for Height and Body Mass Index in ~700000 Individuals of European Ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Kumar, P.; Mahalingam, K. Molecular genetics of human obesity: A comprehensive review. Comptes Rendus Biol. 2017, 340, 87–108. [Google Scholar] [CrossRef]
- Banach, K.; Glibowski, P.; Jedut, P. The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. Appl. Sci. 2020, 10, 5830. [Google Scholar] [CrossRef]
- Iłowiecka, K.; Glibowski, P.; Skrzypek, M.; Styk, W. The Long-Term Dietitian and Psychological Support of Obese Patients Who Have Reduced Their Weight Allows Them to Maintain the Effects. Nutrients 2021, 13, 2020. [Google Scholar] [CrossRef]
- Polish Society of Dietetics (PSD). Standardy leczenia dietetycznego otyłości prostej u osób dorosłych. Dietetyka—Oficjalne Czasopismo Polskiego Towarzystwa Dietetyki 2019, 11, 10–22. (In Polish) [Google Scholar]
- Jarosz, M. Normy Zywienia dla Populacji Polski. IŻŻ. 2017; pp. 11–311. Available online: https://www.gov.pl/attachment/3259f9ef-d8ae-49ab-8f19-4787d686df31 (accessed on 11 August 2022). (In Polish)
- NHANES—National Health and Nutrition Examination Survey Homepage. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 11 August 2022).
- Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Available online: https://www.who.int/publications-detail-redirect/9789241501491 (accessed on 11 August 2022).
- WHO Expert Committee. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995; ISBN 978-92-4-120854-3. [Google Scholar]
- VanItallie, T.B.; Yang, M.U.; Heymsfield, S.B.; Funk, R.C.; Boileau, R.A. Height-Normalized Indices of the Body’s Fat-Free Mass and Fat Mass: Potentially Useful Indicators of Nutritional Status. Am. J. Clin. Nutr. 1990, 52, 953–959. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Głuszek, S.; Ciesla, E.; Głuszek-Osuch, M.; Kozieł, D.; Kiebzak, W.; Wypchło, Ł.; Suliga, E. Anthropometric Indices and Cut-off Points in the Diagnosis of Metabolic Disorders. PLoS ONE 2020, 15, e0235121. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. AlkaMeSy Study Group Visceral Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off Points of the Visceral Adiposity Index (VAI) Identifying a Visceral Adipose Dysfunction Associated with Cardiometabolic Risk in a Caucasian Sicilian Population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Woolcott, O.O.; Bergman, R.N. Relative Fat Mass (RFM) as a New Estimator of Whole-Body Fat Percentage—A Cross-Sectional Study in American Adult Individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Bergman, R.N. Defining Cutoffs to Diagnose Obesity Using the Relative Fat Mass (RFM): Association with Mortality in NHANES 1999-2014. Int. J. Obes. 2020, 44, 1301–1310. [Google Scholar] [CrossRef]
- Gomez-Marcos, M.A.; Gomez-Sanchez, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Gomez-Sanchez, M.; Rigo, F.; Marti, R.; Agudo-Conde, C.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Capacity Adiposity Indices to Identify Metabolic Syndrome in Subjects with Intermediate Cardiovascular Risk (MARK Study). PLoS ONE 2019, 14, e0209992. [Google Scholar] [CrossRef]
- Valdez, R. A Simple Model-Based Index of Abdominal Adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Cho, S.; Shin, A.; Choi, J.-Y.; Park, S.M.; Kang, D.; Lee, J.-K. Optimal Cutoff Values for Anthropometric Indices of Obesity as Discriminators of Metabolic Abnormalities in Korea: Results from a Health Examinees Study. BMC Public Health 2021, 21, 459. [Google Scholar] [CrossRef]
- Abolnezhadian, F.; Hosseini, S.A.; Alipour, M.; Zakerkish, M.; Cheraghian, B.; Ghandil, P.; Cheraghpour, M. Association Metabolic Obesity Phenotypes with Cardiometabolic Index, Atherogenic Index of Plasma and Novel Anthropometric Indices: A Link of FTO-Rs9939609 Polymorphism. Vasc. Health Risk Manag. 2020, 16, 249–256. [Google Scholar] [CrossRef]
- Prakash, J.; Mittal, B.; Srivastava, A.; Awasthi, S.; Srivastava, N. Association of FTO Rs9939609 SNP with Obesity and Obesity- Associated Phenotypes in a North Indian Population. Oman Med. J. 2016, 31, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Mehrdad, M.; Fardaei, M.; Fararouei, M.; Eftekhari, M.H. The Association between FTO Rs9939609 Gene Polymorphism and Anthropometric Indices in Adults. J. Physiol. Anthropol. 2020, 39, 14. [Google Scholar] [CrossRef]
- West, N.R.; Dorling, J.; Thackray, A.E.; Hanson, N.C.; Decombel, S.E.; Stensel, D.J.; Grice, S.J. Effect of Obesity-Linked FTO Rs9939609 Variant on Physical Activity and Dietary Patterns in Physically Active Men and Women. J. Obes. 2018, 2018, e7560707. [Google Scholar] [CrossRef]
- Stocks, T.; Ängquist, L.; Hager, J.; Charon, C.; Holst, C.; Martinez, J.A.; Saris, W.H.M.; Astrup, A.; Sørensen, T.I.A.; Larsen, L.H. TFAP2B -Dietary Protein and Glycemic Index Interactions and Weight Maintenance after Weight Loss in the DiOGenes Trial. Hum. Hered. 2013, 75, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Larrarte, E.; Margareto, J.; Ares, R.; Alkorta, P.; Labayen, I. Preliminary Findings on the Role of PLIN1 Polymorphisms on Body Composition and Energy Metabolism Response to Energy Restriction in Obese Women. Br. J. Nutr. 2011, 106, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, C.; Greenberg, A.; Hu, F.B. Common Variations in Perilipin Gene, Central Obesity, and Risk of Type 2 Diabetes in US Women. Obes. Silver Spring Md 2008, 16, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Meirhaeghe, A.; Thomas, S.; Ancot, F.; Cottel, D.; Arveiler, D.; Ferrières, J.; Amouyel, P. Study of the Impact of Perilipin Polymorphisms in a French Population. J. Negat. Results Biomed. 2006, 5, 10. [Google Scholar] [CrossRef]
- Phinney, S.D.; Tang, A.B.; Waggoner, C.R.; Tezanos-Pinto, R.G.; Davis, P.A. The Transient Hypercholesterolemia of Major Weight Loss. Am. J. Clin. Nutr. 1991, 53, 1404–1410. [Google Scholar] [CrossRef]
- Surampudi, V.; Biggs, K.; Li, Z. Weight Loss and Transient LDL Increase (P12-057-19). Curr. Dev. Nutr. 2019, 3, nzz035.P12-057-19. [Google Scholar] [CrossRef]
- Tobias, D.K.; Chen, M.; Manson, J.E.; Ludwig, D.S.; Willett, W.; Hu, F.B. Effect of Low-Fat Diet Interventions versus Other Diet Interventions on Long-Term Weight Change in Adults: A Systematic Review and Meta-Analysis. Lancet Diabetes Endocrinol. 2015, 3, 968–979. [Google Scholar] [CrossRef]
- Doaei, S.; Mosavi Jarrahi, S.A.; Sanjari Moghadam, A.; Akbari, M.E.; Javadi Kooshesh, S.; Badeli, M.; Azizi Tabesh, G.; Abbas Torki, S.; Gholamalizadeh, M.; Zhu, Z.H.; et al. The Effect of Rs9930506 FTO Gene Polymorphism on Obesity Risk: A Meta-Analysis. Biomol. Concepts 2019, 10, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Wolters, B.; Roth, C.L.; Hinney, A. FTO Gene: Association to Weight Regain after Lifestyle Intervention in Overweight Children. Horm. Res. Paediatr. 2014, 81, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Nakata, Y.; Hotta, K.; Tanaka, K. The FTO Genotype as a Useful Predictor of Body Weight Maintenance: Initial Data from a 5-Year Follow-up Study. Metabolism 2014, 63, 912–917. [Google Scholar] [CrossRef]
- Delahanty, L.M.; Pan, Q.; Jablonski, K.A.; Watson, K.E.; McCaffery, J.M.; Shuldiner, A.; Kahn, S.E.; Knowler, W.C.; Florez, J.C.; Franks, P.W.; et al. Genetic Predictors of Weight Loss and Weight Regain after Intensive Lifestyle Modification, Metformin Treatment, or Standard Care in the Diabetes Prevention Program. Diabetes Care 2012, 35, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Schum, J.; Blumenstock, G.; Weber, K.; Schweizer, R.; Pfaff, C.; Schurr, N.; Ranke, M.B.; Binder, G.; Ehehalt, S.; DISKUS-Study Group. Variants of the FTO Gene in Obese Children and Their Impact on Body Composition and Metabolism before and after Lifestyle Intervention. Exp. Clin. Endocrinol. Diabetes 2012, 120, 128–131. [Google Scholar] [CrossRef]
- Müller, T.D.; Hinney, A.; Scherag, A.; Nguyen, T.T.; Schreiner, F.; Schäfer, H.; Hebebrand, J.; Roth, C.L.; Reinehr, T. “Fat Mass and Obesity Associated” Gene (FTO): No Significant Association of Variant Rs9939609 with Weight Loss in a Lifestyle Intervention and Lipid Metabolism Markers in German Obese Children and Adolescents. BMC Med. Genet. 2008, 9, 85. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, H.; Pan, A.; Patel, B.; Xiang, G.; Qi, L.; Kaplan, R.C.; Hu, F.; Wylie-Rosett, J.; Qi, Q. FTO Genotype and Weight Loss in Diet and Lifestyle Interventions: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2016, 103, 1162–1170. [Google Scholar] [CrossRef]
- Matsuo, T.; Nakata, Y.; Murotake, Y.; Hotta, K.; Tanaka, K. Effects of FTO Genotype on Weight Loss and Metabolic Risk Factors in Response to Calorie Restriction among Japanese Women. Obes. Silver Spring Md. 2012, 20, 1122–1126. [Google Scholar] [CrossRef]
- Soenen, S.; Mariman, E.C.M.; Vogels, N.; Bouwman, F.G.; den Hoed, M.; Brown, L.; Westerterp-Plantenga, M.S. Relationship between Perilipin Gene Polymorphisms and Body Weight and Body Composition during Weight Loss and Weight Maintenance. Physiol. Behav. 2009, 96, 723–728. [Google Scholar] [CrossRef]
- Ahmad, H.S.; Meysam, A.; Mehrnoosh, Z.; Bahman, C.; Pegah, G. The Gene-Treatment Interaction of Fto-Rs9939609 Gene Polymorphism and Epigallocatechin-Gallate Intervention on Anthropometric Indices, Fasting Blood Sugar and Insulin Resistance/Sensitivity in Patients with Type 2 Diabetes Mellitus. Iran. Red Crescent Med. J. 2018, 20, e82228. [Google Scholar]
- Hardy, D.S.; Stallings, D.T.; Garvin, J.T.; Gachupin, F.C.; Xu, H.; Racette, S.B. Anthropometric Discriminators of Type 2 Diabetes among White and Black American Adults. J. Diabetes 2017, 9, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, H.-K.; Wu, X.-W.; Cao, Z.; Tu, Y.-C.; Ma, Y.; Li, B.-N.; Peng, Q.-Y.; Cheng, J.; Wu, B.; et al. The Feasibility of Two Anthropometric Indices to Identify Metabolic Syndrome, Insulin Resistance and Inflammatory Factors in Obese and Overweight Adults. Nutr. Burbank Los Angel. Cty. Calif 2019, 57, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chang, Y.; Guo, X.; Chen, Y.; Ye, N.; Sun, Y. A Body Shape Index and Body Roundness Index: Two New Body Indices for Detecting Association between Obesity and Hyperuricemia in Rural Area of China. Eur. J. Intern. Med. 2016, 29, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Pérez-Sousa, M.Á.; Izquierdo, M.; Cano-Gutierrez, C.A.; González-Jiménez, E.; Schmidt-RioValle, J.; González-Ruíz, K.; Correa-Rodríguez, M. Validation of Surrogate Anthropometric Indices in Older Adults: What Is the Best Indicator of High Cardiometabolic Risk Factor Clustering? Nutrients 2019, 11, 1701. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Guan, H.; Zhang, S.; Zhu, Q.; Fu, X.; Chen, H.; Tang, S.; Feng, Y.; Kuang, J. Body Roundness Index Is a Superior Obesity Index in Predicting Diabetes Risk Among Hypertensive Patients: A Prospective Cohort Study in China. Front. Cardiovasc. Med. 2021, 8, 736073. [Google Scholar] [CrossRef] [PubMed]
- Shidfar, F.; Alborzi, F.; Salehi, M.; Nojomi, M. Association of Waist Circumference, Body Mass Index and Conicity Index with Cardiovascular Risk Factors in Postmenopausal Women. Cardiovasc. J. Afr. 2012, 23, 442–445. [Google Scholar] [CrossRef]
- Valdez, R.; Seidell, J.C.; Ahn, Y.I.; Weiss, K.M. A New Index of Abdominal Adiposity as an Indicator of Risk for Cardiovascular Disease. A Cross-Population Study. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1993, 17, 77–82. [Google Scholar]
- Corrêa, C.R.; Formolo, N.P.S.; Dezanetti, T.; Speretta, G.F.F.; Nunes, E.A. Relative Fat Mass Is a Better Tool to Diagnose High Adiposity When Compared to Body Mass Index in Young Male Adults: A Cross-Section Study. Clin. Nutr. ESPEN 2021, 41, 225–233. [Google Scholar] [CrossRef]
- Senkus, K.E.; Crowe-White, K.M.; Locher, J.L.; Ard, J.D. Relative Fat Mass Assessment Estimates Changes in Adiposity among Female Older Adults with Obesity after a 12-Month Exercise and Diet Intervention. Ann. Med. 2022, 54, 1160–1166. [Google Scholar] [CrossRef]
- Kobo, O.; Leiba, R.; Avizohar, O.; Karban, A. Relative Fat Mass Is a Better Predictor of Dyslipidemia and Metabolic Syndrome than Body Mass Index. Cardiovasc. Endocrinol. Metab. 2019, 8, 77–81. [Google Scholar] [CrossRef]
- Andreasson, A.; Carlsson, A.C.; Önnerhag, K.; Hagström, H. Predictive Capacity for Mortality and Severe Liver Disease of the Relative Fat Mass Algorithm. Clin. Gastroenterol. Hepatol. 2019, 17, 2619–2620. [Google Scholar] [CrossRef] [PubMed]
- Bozorgmanesh, M.; Hadaegh, F.; Azizi, F. Predictive Performance of the Visceral Adiposity Index for a Visceral Adiposity-Related Risk: Type 2 Diabetes. Lipids Health Dis. 2011, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Adanas, G.; Özgen, G. The Relation of Visceral Adiposity Index and Lipid Accumulation Product with Metabolic, Anthropometric, and Hormonal Parameters in Patients with Polycystic Ovary Syndrome. J. Surg. Med. 2020, 4, 664–668. [Google Scholar] [CrossRef]
- Hudzik, B.; Nowak, J.; Szkodziński, J.; Zubelewicz-Szkodzińska, B. Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease. Nutrients 2021, 13, 2351. [Google Scholar] [CrossRef]
- Zar, A.; Ali, S.S. Visceral Adiposity Index: A Simple Tool for Assessing Risk of Type 2 Diabetes Mellitus. J. Ayub Med. Coll. Abbottabad JAMC 2022, 34, 345–350. [Google Scholar] [CrossRef]
- Wanderley Rocha, D.R.T.; Jorge, A.R.; Braulio, V.B.; Arbex, A.K.; Marcadenti, A. Visceral Adiposity Measurements, Metabolic and Inflammatory Profi Le in Obese Patients with and Without Type 2 Diabetes Mellitus: A Crosssectional Analysis. Curr. Diabetes Rev. 2017, 13, 11–18. [Google Scholar] [CrossRef]
- Rao, K.M.; Arlappa, N.; Radhika, M.S.; Balakrishna, N.; Laxmaiah, A.; Brahmam, G.N.V. Correlation of Fat Mass Index and Fat-Free Mass Index with Percentage Body Fat and Their Association with Hypertension among Urban South Indian Adult Men and Women. Ann. Hum. Biol. 2012, 39, 54–58. [Google Scholar] [CrossRef]
- Ferreira, J.; Martins, C.A.; Cattafesta, M.; dos Neto, E.T.S.; Rocha, J.L.M.; Salaroli, L.B. Conicity Index as an Indicator of Abdominal Obesity in Renal Individuals Undergoing Hemodialysis: An Analysis of Latent Classes. Curr. Dev. Nutr. 2022, 6, 901. [Google Scholar] [CrossRef]
- Christakoudi, S.; Tsilidis, K.K.; Muller, D.C.; Freisling, H.; Weiderpass, E.; Overvad, K.; Söderberg, S.; Häggström, C.; Pischon, T.; Dahm, C.C.; et al. A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: Results from a large European cohort. Sci. Rep. 2020, 10, 14541. [Google Scholar] [CrossRef]
- UK Biobank. Data Showcase. Available online: https://biobank.ctsu.ox.ac.uk/crystal/browse.cgi?id=100080&cd=category (accessed on 8 September 2022).
Parameter | Baseline | After 6 Months | After 12 Months |
---|---|---|---|
n = 36 (n = 22 Women, n = 14 Men) | |||
Age (years) | 36.58 B ± 9.85 | 37.14 AB ± 9.80 | 37.58 A ± 9.85 |
Height (m) | 1.72 A ± 0.10 | 1.72 A ± 0.10 | 1.72 A ± 0.10 |
Body weight value (kg) | 104.02 A ± 17.92 | 96.63 C ± 18.25 | 99.27 B ± 18.86 |
Fat mass (%) | 41.11 A ± 5.96 | 38.23 C ± 6.64 | 39.40 B ± 10.46 |
VAT (L) | 3.69 A ± 2.36 | 2.65 B ± 1.99 | 2.82 B ± 1.99 |
WC (cm) | 107.72 A ± 13.56 | 99.42 C ± 13.50 | 101.17 B ± 13.34 |
Phase angle (°) | 5.57 A ± 0.65 | 5.54 A ± 0.68 | 5.55 A ± 0.65 |
Total-chol (mmol/L) | 4.92 B ± 0.93 | nd | 5.29 A ± 1.00 |
HDL (mmol/L) | 1.37 A ± 0.38 | nd | 1.41 A ± 0.36 |
LDL (mmol/L) | 2.98 B ± 0.80 | nd | 3.30 A ± 0.83 |
TG (mmol/L) | 1.29 A ± 0.57 | nd | 1.27 A ± 0.45 |
Anthropometric Indices | Baseline | After a 6 Months | After a 12 Months |
---|---|---|---|
BMI (kg/m2) | 35.04 A ± 3.80 | 32.43 C ± 3.96 | 33.40 B ± 4.12 |
FMI (kg/m2) | 14.46 A ± 3.03 | 12.47 C ± 3.13 | 13.35 B ± 3.37 |
ABSI | 0.077 A ± 0.006 | 0.075 B ± 0.006 | 0.074 B ± 0.005 |
ABSI z-score | −0.459 A ± 1.156 | −0.983 B ± 1.119 | −1.108 B ± 0.929 |
VAI | 1.74 A ± 0.97 | nd | 1.24 B ± 0.40 |
RFM (%) | 39.38 A ± 5.73 | 36.62 C ± 5.88 | 37.28 B ± 5.86 |
BRI | 6.13 A ± 1.57 | 5.02 B ± 1.41 | 5.25 B ± 1.39 |
CI (m3/2/kg1/2) | 1.273 A ± 0.100 | 1.221 B ± 0.099 | 1.223 B ± 0.089 |
Parameter | Body Weight | FM% | VAT | WC | BMI | FMI | ABSI | ABSI z-s | VAI | RFM | BRI | CI | TG | HDL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Body Weight | − | |||||||||||||
FM% | −0.141 | − | ||||||||||||
VAT | 0.823 ** | −0.320 | − | |||||||||||
WC | 0.837 ** | −0.084 | 0.934 ** | − | ||||||||||
BMI | 0.768 ** | 0.328 | 0.598 ** | 0.754 ** | − | |||||||||
FMI | 0.291 | 0.876 ** | 0.074 | 0.330 * | 0.738 ** | − | ||||||||
ABSI | 0.399 * | −0.281 | 0.774 ** | 0.786 ** | 0.240 | −0.064 | − | |||||||
ABSI z-s | 0.286 | −0.148 | 0.674 ** | 0.697 ** | 0.165 | −0.002 | 0.949 ** | − | ||||||
VAI | 0.325 | 0.108 | 0.240 | 0.373 * | 0.445 * | 0.329 | 0.200 | 0.210 | − | |||||
RFM | −0.287 | 0.830 ** | −0.367 * | −0.078 | 0.283 | 0.740 ** | −0.144 | −0.064 | 0.205 | − | ||||
BRI | 0.589 ** | 0.194 | 0.749 ** | 0.895 ** | 0.801 ** | 0.550 ** | 0.715 ** | 0.660 ** | 0.392 * | 0.298 | − | |||
CI | 0.541 ** | −0.178 | 0.849 ** | 0.897 ** | 0.449 * | 0.113 | 0.974 ** | 0.914 ** | 0.276 | −0.072 | 0.843 ** | − | ||
TG | 0.301 | −0.148 | 0.315 | 0.335 * | 0.281 | 0.047 | 0.243 | 0.231 | 0.815 ** | −0.042 | 0.281 | 0.286 | − | |
HDL | −0.464 * | 0.190 | −0.393 * | −0.392 * | −0.376 * | −0.069 | −0.197 | −0.148 | −0.581 * | 0.243 | −0.270 | −0.248 | −0.243 | − |
SNP Variant | Baseline (n = 36) |
---|---|
rs9939609 (FTO) | |
AA * | 10 (27.8%) |
AT | 22 (61.1%) |
TT | 4 (11.1%) |
rs987237 (TFAP2B) | |
GG * | 4 (11.1%) |
AG | 16 (44.4%) |
AA | 16 (44.4%) |
rs894160 (PLIN1) | |
AA * | 2 (5.6%) |
AG | 15 (41.7%) |
GG | 19 (52.7%) |
Anthropometric Indices | rs9939609 (FTO) | ||||||||
---|---|---|---|---|---|---|---|---|---|
AA (n = 10) | AT (n = 22) | TT (n = 4) | |||||||
Baseline | 6 Month | 12 Month | Baseline | 6 Month | 12 Month | Baseline | 6 Month | 12 Month | |
BMI (kg/m2) | 35.89 Aa ± 4.82 | −1.95 Ab (−5.43%) | −0.50 Aab (−1.39%) | 34.82 Aa ± 3.51 | −3.01 Ac (−8.64%) | −2.24 Ab (−6.43%) | 33.79 Aa ± 1.89 | −2.26 Ab (−6.69%) | −0.90 Aab (−2.66%) |
FMI (kg/m2) | 14.42 Aa ± 3.55 | −1.44 Ab (−9.99%) | 0.10 Aa (+0.69%) | 14.63 Aa ± 3.09 | −2.25 Ab (−15.38%) | −1.69 Bb (−11.55%) | 13.63 Aa ± 1.26 | −1.99 Ab (−14.60%) | −0.99 ABab (−7.26%) |
ABSI | 0.079 Aa ± 0.004 | −0.002 Aab (−2.53%) | −0.002 Ab (−2.53%) | 0.076 Aa ± 0.006 | −0.002 Ab (−2.63%) | −0.003 Ab (−3.94%) | 0.076 Aa ± 0.008 | −0.002 Aa (−2.63%) | −0.001 Aa (−1.32%) |
VAI | 1.67 Aa ± 0.97 | nd | −0.32 Aa (−19.16%) | 1.82 Aa ± 1.04 | nd | −0.66 Ab (−36.26%) | 1.49 Aa ± 0.64 | nd | −0.07 Aa (4.70%) |
RFM (%) | 38.98 Aa ± 5.71 | −1.99 Ab (−5.11%) | −1.22 Ab (−3.13%) | 40.14 Aa ± 5.73 | −3.18 Ab (−7.92%) | −2.64 Bb (−6.58%) | 36.24 Aa ± 6.15 | −2.36 Ab (−6.51%) | −1.38 ABab (−3.81%) |
BRI | 6.61 Aa ± 1.29 | −0.86 Ab (−13.01%) | −0.57 Ab (−8.62%) | 6.03 Aa ± 1.71 | −1.26 Ab (−20.89%) | −1.09 Ab (−18.07%) | 5.43 Aa ± 1.34 | −0.90 Ab (−16.57%) | −0.49 Aab (−9.02%) |
CI (m3/2/kg1/2) | 1.309 Aa ± 0.062 | −0.040 Ab (−3.05%) | −0.039 Ab (−2.98%) | 1.259 Aa ± 0.108 | −0.059 Ab (−4.69%) | −0.059 Ab (−4.69%) | 1.261Aa ± 0.128 | −0.045 Aa (−3.57%) | −0.030 Aa (−2.38%) |
WC (cm) | 112.60 Aa ± 13.03 | −6.30 Ab (−5.59%) | −4.10 Ab (−3.64%) | 105.64 Aa ± 13.90 | −9.41 Ab (−8.91%) | −8.18 Ab (−7.74%) | 107.00 Aa ± 13.09 | −7.25 Ab (−6.78%) | −3.75 Aab (−3.50%) |
Anthropometric Indices | rs987237 (TFAP2B) | ||||||||
---|---|---|---|---|---|---|---|---|---|
GG (n = 4) | AG (n = 16) | AA (n = 16) | |||||||
Baseline | 6 Month | 12 Month | Baseline | 6 Month | 12 Month | Baseline | 6 Month | 12 Month | |
BMI (kg/m2) | 38.44 Aa ± 4.68 | −2.60 Ab (−6.76%) | −1.85 Ab (−4.81%) | 33.83 Aa ± 3.27 | −2.50 Ab (−7.39%) | −1.94 Ab (−5.73%) | 35.31 Aa ± 3.62 | −2.78 Ab (−7.87%) | −1.21 Aa (−3.43%) |
FMI (kg/m2) | 16.03 Aa ± 4.18 | −1.78 Ab (−11.10%) | −0.65 Aab (−4.05%) | 13.77 Aa ± 2.60 | −1.83 Ab (−13.29%) | −1.49 Ab (−10.82%) | 14.76 Aa ± 3.15 | −2.21 Ab (−14.97%) | −0.85 Aa (−5.76%) |
ABSI | 0.076 Aa ± 0.006 | −0.001 Aa (−1.32%) | −0.001 Aa (−1.32%) | 0.075 Aa ± 0.007 | −0.002 Ab (−2.67%) | −0.003 Ab (−4.00%) | 0.078 Aa ± 0.004 | −0.002 Ab (−2.56%) | −0.002 Ab (−2.56%) |
VAI | 2.01 Aa ± 1.19 | nd | −0.68 Aa (−33.83%) | 1.80 Aa ± 0.92 | nd | −0.60 Ab (−33.33%) | 1.61 Aa ± 1.02 | nd | −0.36 Aa (−22.36%) |
RFM (%) | 38.82 Aa ± 6.24 | −2.09 Ab (−5.38%) | −1.50 Aab (−3.86%) | 38.78 Aa ± 5.86 | −2.91 Ab (−7.50%) | −2.60 Ab (−6.70%) | 40.12 Aa ± 5.78 | −2.78 Ac (−6.93%) | −1.76 Ab (−4.39%) |
BRI | 6.60 Aa ± 1.56 | −0.89 Ab (−13.48%) | −0.62 Aab (−9.39%) | 5.62 Aa ± 1.59 | −1.09 Ab (−19.39%) | −0.98 Ab (−17.44%) | 6.51 Aa ± 1.50 | −1.19 Ab (−18.28%) | −0.85 Ab (−13.06%) |
CI (m3/2/kg1/2) | 1.277 Aa ± 0.10 | −0.034 Aa (−2.34%) | −0.023 Aa (−1.56%) | 1.244 Aa ± 0.12 | −0.056 Ab (−4.52%) | −0.060 Ab (−4.76%) | 1.301 Aa ± 0.074 | −0.053 Ab (−4.07%) | −0.048 Ab (−3.9%) |
WC (cm) | 115.00 Aa ± 13.09 | −6.75 Ab (−5.87%) | −4.75 Aab (−4.13%) | 103.00 Aa ± 14.30 | −8.25 Ab (−8.01%) | −7.63 Ab (−7.41%) | 105.00 Aa ± 17.06 | −8.75 Ab (−8.33%) | −5.94 Ab (−5.66%) |
Anthropometric Indices | rs894160 (PLIN1) | |||||
---|---|---|---|---|---|---|
AA + AG (n = 2 + 15) | GG (n = 19) | |||||
Baseline | 6 Month | 12 Month | Baseline | 6 Month | 12 Month | |
BMI (kg/m2) | 33.68 Ba ± 2.91 | −2.83 Ac (−8.40%) | −2.02 Ab (−6.00%) | 36.19 Aa ± 4.10 | −2.46 Ac (−6.80%) | −1.24 Ab (−3.43%) |
FMI (kg/m2) | 13.87 Aa ± 2.53 | −2.03 Ab (−14.66%) | −1.41 Ab (−10.17%) | 14.99 Aa ± 340 | −1.96 Ab (−13.08%) | −0.85 Aa (−5.67%) |
ABSI | 0.076 Aa ± 0.007 | −0.002 Ab (−2.63%) | −0.002 Ab (−2.63%) | 0.077 Aa ± 0.005 | −0.002 Ab (−2.60%) | −0.003 Ab (−3.90%) |
VAI | 1.69 Aa ± 0.95 | nd | −0.48 Ab (−24.49%) | 1.78 Aa ± 1.01 | nd | −0.52 Ab (−29.21%) |
RFM (%) | 39.24 Aa ± 5.33 | −2.99 Ab (−7.62%) | −2.36 Ab (−6.01%) | 39.51 Aa ± 6.21 | −2.55 Ab (−6.45%) | −1.88 Ab (−4.76%) |
BRI | 5.66 Aa ± 1.41 | −1.08 Ab (−19.08%) | −0.88 Ab (−15.55%) | 6.54 Aa ± 1.62 | −1.14 Ab (−17.43%) | −0.88 Ab (−13.46%) |
CI (m3/2/kg1/2) | 1.254 Aa ± 0.111 | −0.049 Ab (−3.91%) | −0.049 Ab (−3.91%) | 1.291 Aa ± 0.088 | −0.054 Ab (−4.18%) | −0.051 Ab (−3.95%) |
WC (cm) | 103.53 Aa ± 13.25 | −8.29 Ab (−8.01%) | −6.94 Ab (−6.70%) | 111.47 Aa ± 13.04 | −8.32 Ab (−7.46%) | −6.21 Ab (−5.57%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iłowiecka, K.; Glibowski, P.; Libera, J.; Koch, W. Changes in Novel Anthropometric Indices of Abdominal Obesity during Weight Loss with Selected Obesity-Associated Single-Nucleotide Polymorphisms: A Small One-Year Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 11837. https://doi.org/10.3390/ijerph191811837
Iłowiecka K, Glibowski P, Libera J, Koch W. Changes in Novel Anthropometric Indices of Abdominal Obesity during Weight Loss with Selected Obesity-Associated Single-Nucleotide Polymorphisms: A Small One-Year Pilot Study. International Journal of Environmental Research and Public Health. 2022; 19(18):11837. https://doi.org/10.3390/ijerph191811837
Chicago/Turabian StyleIłowiecka, Katarzyna, Paweł Glibowski, Justyna Libera, and Wojciech Koch. 2022. "Changes in Novel Anthropometric Indices of Abdominal Obesity during Weight Loss with Selected Obesity-Associated Single-Nucleotide Polymorphisms: A Small One-Year Pilot Study" International Journal of Environmental Research and Public Health 19, no. 18: 11837. https://doi.org/10.3390/ijerph191811837
APA StyleIłowiecka, K., Glibowski, P., Libera, J., & Koch, W. (2022). Changes in Novel Anthropometric Indices of Abdominal Obesity during Weight Loss with Selected Obesity-Associated Single-Nucleotide Polymorphisms: A Small One-Year Pilot Study. International Journal of Environmental Research and Public Health, 19(18), 11837. https://doi.org/10.3390/ijerph191811837