Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment
Abstract
:1. Introduction
2. Major Genera of Human Enteric Viruses: Structure, Pathogenicity and Epidemiology
2.1. Rotaviruses
2.2. Enteroviruses
2.3. Adenoviruses
2.4. Noroviruses
3. The Wastewater Treatment Process and Pollution from Viral Pathogens
4. Factors Affecting the Removal and Inactivation of Viruses in Wastewater Systems
5. Resistance of Enteric Viruses to Disinfectants
6. Consequences of Enteric Virus Persistence in Wastewater Effluents
7. Water
8. Contamination risks of Foods from Wastewaters with Pollutant Enteric Viruses
9. Future Directions
Acknowledgments
References
- Bosch, A. Human enteric viruses in the water environment: A minireview. Int. Microbiol 1998, 1, 191–196. [Google Scholar]
- Carter, MJ. Enterically infecting viruses: Pathogenicity, transmission and significance for food and waterborne infection. J. Appl. Microbiol 2005, 98, 1354–1380. [Google Scholar]
- Li, WJ; Xin, WW; Rui, QY; Song, N; Zhang, FG; Ou, YC; Chao, FH. A new and simple method for concentration of enteric viruses from water. J. Virol. Meth 1998, 74, 99–108. [Google Scholar]
- Svraka, S; Duizer, E; Vennema, H; de Bruin, E; van der Veer, B; Dorresteijn, B; Koopmans, M. Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. J. Clin. Microbiol 2007, 45, 1389–1394. [Google Scholar]
- Cloette, TE; Da Silva, E; Nel, LH. Removal of waterborne human enteric viruses and coliphages with oxidized coal. Curr. Microbiol 1998, 37, 23–27. [Google Scholar]
- Karmakar, S; Rathore, AS; Kadri, SM; Dutt, S; Khare, S; Lal, S. Post-earthquake outbreak of rotavirus gastroenteritis in Kashmir (India): An epidemiological analysis. Public Health 2008, 122, 981–989. [Google Scholar]
- He, JW; Jiang, S. Quantification of enterococci and human adenoviruses in environmental samples by Real-Time PCR. Appl. Environ. Microbiol 2005, 71, 2250–2255. [Google Scholar]
- Weisberg, SS. Rotavirus. Disease-a-Month 2007, 53, 510–514. [Google Scholar]
- Dennehy, PH. Rotavirus vaccines-an update. Vaccine 2007, 25, 3137–3141. [Google Scholar]
- Madisch, I; Harste, G; Pommer, H; Heim, A. Phylogenetic analysis of the main neutralization and hemagglutination determinants of all human adenovirus prototypes as a basis for molecular classification and taxonomy. J. Virol 2005, 79, 15265–15276. [Google Scholar]
- Rahman, M; Hassan, ZM; Zafrul, H; Saiada, F; Banik, S; Faruque, ASG; Delbeke, T; Matthijnssens, J; Van Ranst, M; Azim, T. Sequence analysis and evolution of group B rotaviruses. Virus Res 2007, 125, 219–225. [Google Scholar]
- Gómara, MI; Kang, G; Mammen, A; Jana, AK; Abraham, M; Desselberger, U; Brown, D; Gray, J. Characterization of G10P[11] rotaviruses causing acute gastroenteritis in neonates and infants in Vellore, India. J. Clin. Microbiol 2004, 42, 2541–2547. [Google Scholar]
- Arista, S; Giammanco, GM; De Grazia, S; Colomba, C; Martella, V. Genetic variability among serotype G4 Italian human rotaviruses. J. Clin. Microbiol 2005, 43, 1420–1425. [Google Scholar]
- Burke, B; Desselberger, U. Rotavirus pathogenicity. Virology 1996, 218, 299–305. [Google Scholar]
- Lundgren, O; Svensson, L. Pathogenesis of rotavirus diarrhea. Microbes Inf 2001, 3, 1145–1156. [Google Scholar]
- Feng, N; Lawton, JA; Gilbert, J; Kuklin, N; Vo, P; Prasad, BVV; Greenberg, HB. Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6–specific IgA mAb. J. Clin. Invest 2002, 109, 1203–1213. [Google Scholar]
- Anderson, EJ; Weber, SG. Rotavirus infection in adults. Lancet Inf. Dis 2004, 4, 91–99. [Google Scholar]
- Ramig, RF. Pathogenesis of intestinal and systemic rotavirus infection. J. Virol 2004, 78, 10213–10220. [Google Scholar]
- Coulson, BS; Witterick, PD; Tan, Y; Hewish, MJ; Mountford, JN; Harrison, LC; Honeyman, MC. Growth of rotaviruses in primary pancreatic cells. J. Virol 2002, 76, 9537–9544. [Google Scholar]
- Steele, AD; Peenze, I; de Beer, MC; Pager, CT; Yeats, J; Potgieter, N; Ramsaroop, U; Page, NA; Mitchell, JO; Geyer, A; Bos, P; Alexander, JJ. Anticipating rotavirus vaccines: epidemiology and surveillance of rotavirus in South Africa. Vaccine 2003, 21, 354–360. [Google Scholar]
- Parashar, UD; Gibson, CJ; Bresee, JS; Glass, RI. Rotavirus and severe childhood diarrhea. Emerg. Inf. Dis 2006, 12, 304–306. [Google Scholar]
- Ruiz-Palacios, GM; Pérez-Schael, I; Velázquez, FR; Abate, H; Breuer, T; Clemens, SC; Cheuvart, B; Espinoza, F; Gillard, P; Innis, BL; Cervantes, Y; Linhares, AC; López, P; Macías-Parra, M; Ortega-Barría, E; Richardson, V; Rivera-Medina, DM; Rivera, L; Salinas, B; Pavía-Ruz, N; Salmerón, J; Rüttimann, R; Tinoco, JC; Rubio, P; Nuñez, E; Guerrero, ML; Yarzábal, JP; Damaso, S; Tornieporth, N; Sáez-Llorens, X; Vergara, RF; Vesikari, T; Bouckenooghe, A; Clemens, R; De Vos, B; O’Ryan, M; Human Rotavirus Vaccine Study Group. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. New Engl. J. Med 2006, 354, 11–22. [Google Scholar]
- Nasri, D; Bouslama, L; Omar, S; Saoudin, H; Bourlet, T; Aouni, M; Pozzetto, B; Pillet, S. Typing of human enterovirus by partial sequencing of VP2. J. Clin. Microbiol 2007, 45, 2370–2379. [Google Scholar]
- Oberste, MS; Maher, K; Michele, SM; Belliot, G; Uddin, M; Pallansch, MA. Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A. J. Gen. Virol 2005, 86, 445–451. [Google Scholar]
- Oberste, MS; Maher, K; Williams, AJ; Dybdahl-Sissoko, N; Brown, BA; Gookin, MS; Peñaranda, S; Mishrik, N; Uddin, M; Pallansch, MA. Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J. Gen. Virol 2006, 87, 119–128. [Google Scholar]
- Palacios, G; Oberst, MS. Enteroviruses as agents of emerging infectious diseases. J. Neur. Virol 2005, 11, 424–433. [Google Scholar]
- Williams, CH; Kajander, T; Hyypiä, T; Jackson, T; Sheppard, D; Stanway, G. Integrin vß6 is an RGD-dependent receptor for Coxsackievirus A9. J. Virol 2004, 78, 6967–6973. [Google Scholar]
- Bauer, S; Gottesman, G; Sirota, L; Litmanovitz, I; Ashkenazi, S; Levi, I. Severe Coxsackie virus B infection in preterm newborns treated with pleconaril. Eur. J. Ped 2002, 161, 491–493. [Google Scholar]
- Peng, T; Li, Y; Yang, Y; Niu, C; Morgan-Capner, P; Archard, LC; Zhang, H. Characterization of Enterovirus Isolates from patients with muscle disease in a Selenium-deficient area in China. J. Clin. Microbiol 2000, 38, 3538–3543. [Google Scholar]
- Hyypia, T; Hovi, T; Knowles, NJ; Stanway, G. Classification of enteroviruses based on molecular and biological properties. J. Gen. Virol 1997, 78, 1–11. [Google Scholar]
- Daley, JK; Gechman, LA; Skipworth, J; Rall, GF. Poliovirus replication and spread in primary neuron cultures. Virology 2005, 340, 10–20. [Google Scholar]
- Racaniello, VR. One hundred years of poliovirus pathogenesis. Virology 2006, 344, 9–16. [Google Scholar]
- Vellinga, J; Van der Heijdt, S; Hoeben, RC. The adenovirus capsid: major progress in minor proteins. J. Gen. Virol 2005, 86, 1581–1588. [Google Scholar]
- Kajon, AE; Moseley, JM; Metzgar, D; Huong, HS; Wadleigh, A; Ryan, MAK; Russell, KL. Molecular epidemiology of adenovirus type 4 infections in US military recruits in the Postvaccination Era (1997–2003). J. Inf. Dis 2007, 196, 67–75. [Google Scholar]
- Goosney, DL; Nemerow, GR. Adenovirus infection: taking the back roads to viral entry. Current Biol 2003, 13, 99–100. [Google Scholar]
- Zubieta, C; Schoehn, G; Chroboczek, J; Cusack, S. The structure of the human adenovirus 2 Penton. Mol.Cell 2005, 17, 319–320. [Google Scholar]
- Coyne, CB; Bergelson, JM. CAR: a virus receptor within the tight junction. Adv. Drug Deli. Revs 2005, 57, 869–882. [Google Scholar]
- Walters, RW; Freimuth, P; Moninger, TO; Ganske, I; Zabner, J; Welsh, MJ. Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 2002, 110, 789–799. [Google Scholar]
- Echavarria, M; Forman, M; van Tol, MJD; Vossen, JM; Charache, P; Kroes, ACM. Prediction of severe disseminated adenovirus infection by serum PCR. Lancet 2001, 358, 384–385. [Google Scholar]
- Flomenberg, P. Adenovirus infections. Medicine 2005, 33, 128–130. [Google Scholar]
- Chakravarty, S; Hutson, AM; Estes, MK; Prasad, BVV. Evolutionary trace residues in noroviruses: importance in receptor binding, antigenicity, virion assembly, and strain diversity. J. Virol 2005, 79, 554–568. [Google Scholar]
- Butt, AA; Aldridge, KE; Sanders, CV. Infections related to the ingestion of seafood Part I: viral and bacterial infections. Lancet Inf. Dis 2004, 4, 201–212. [Google Scholar]
- Prasad, BVV; Hardy, ME; Dokland, T; Bella, J; Rossmann, MG; Estes, MK. X-ray crystallographic structure of the norwalk virus capsid. Science 1999, 286, 287–290. [Google Scholar]
- Tan, M; Meller, J; Jiang, X. C-Terminal Arginine cluster is essential for receptor binding of Norovirus Capsid Protein. J. Virol 2006, 80, 7322–7331. [Google Scholar]
- Hutson, AM; Atmar, RL; Estes, MK. Norovirus disease: changing epidemiology and host susceptibility factors. Trends Mic 2004, 12, 279–287. [Google Scholar]
- Maguire, AJ; Green, J; Brown, DWG; Desselberger, U; Gray, JJ. Molecular epidemiology of outbreaks of Gastroenteritis associated with small round-structured viruses in east Anglia, United Kingdom, during the 1996–1997 season. J. Clin. Microbiol 1999, 37, 81–89. [Google Scholar]
- Ike, AC; Brockmann, SO; Hartelt, K; Marschang, RE; Contzen, M; Oehme, RM. Molecular epidemiology of norovirus in outbreaks of Gastroenteritis in southwest Germany from 2001 to 2004. J. Clin. Microbiol 2006, 44, 1262–1267. [Google Scholar]
- Argaw, N. Chapter 6: Wastewater Sources and Treatment. In Renewable Energy in Water and Wastewater Treatment Applications; National Renewable Energy Laboratory, US Department of Energy Laboratory: Golden, CO, USA, 2004; pp. 38–46. [Google Scholar]
- DeBusk, WF. Wastewater treatment wetlands: contaminant removal processes; University of Florida, IFAS Extension: Gainesville, FL, USA, 1999; pp. 1–5. [Google Scholar]
- Templeton, MR; Andrews, RC; Hofmann, R. Particle-associated viruses in water: impacts on disinfection processes. Critical Revs. Environ. Sci. Tech 2008, 38, 137–164. [Google Scholar]
- Templeton, M; Hofmann, R; Andrews, RC. Ultraviolet disinfection of particle-associated viruses. In Chemical Water and Wastewater Treatment; Hahn, H, Hoffman, E, Odegaard, H, Eds.; IWA Publishing: Padstow, Cornwall, UK, 2004; pp. 109–116. [Google Scholar]
- Ueda, T; Horan, NJ. Fate of indigenous bacteriophage in a membrane bioreactor. Water Res 2004, 34, 2151–2159. [Google Scholar]
- Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C. Wastewater disinfection alternatives: Chlorine, Ozone, Peracetic Acid, and UV Light. Water Environ. Res 2007, 79, 2373–2379. [Google Scholar]
- Formiga-Cruz, M; Tofiño-Quesada, G; Bofill-Mas, S; Lees, DN; Henshilwood, K; Allard, AK; Conden-Hansson, AC; Hernroth, BE; Vantarakis, A; Tsibouxi, A; Papapetropoulou, M; Furones, MD; Girones, R. Distribution of human virus contamination in shellfish from different growing areas in Greece, Spain, Sweden, and the United Kingdom. Appl. Environ. Microbiol 2002, 68, 5990–5998. [Google Scholar]
- Fong, TT; Lipp, EK. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Revs 2005, 69, 357–371. [Google Scholar]
- Maunula, L; Miettinen, IT; von Bonsdorff, CH. Norovirus outbreaks from drinking water. Emerg. Inf. Dis 2007, 11, 1716–1721. [Google Scholar]
- Igbinosa, EO; Obi, LC; Okoh, AI. Occurrence of potentially pathogenic vibrios in the final effluents of a wastewater treatment facility in a rural community of the eastern Cape Province of South Africa. Res. Microbiol 2009, 160, 531–537. [Google Scholar]
- Odjadjare, EEO; Okoh, AI. Prevalence and distribution of Listeria pathogens in the final effluents of a rural wastewater treatment facility in the eastern Cape Province of South Africa. World J. Microbiol. & Biotech 2010, 26, 297–307. [Google Scholar]
- Okoh, AI; Odjadjare, EE; Igbinosa, EO; Osode, AN. Wastewater treatment plants as a source of microbial pathogens in the receiving watershed. Afr. J. Biotech 2007, 6, 2932–2944. [Google Scholar]
- Igbinosa, EO; Okoh, AI. Impact of discharge wastewater effluents on the physic-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech 2009, 6, 175–182. [Google Scholar]
- Ehlers, MM; Grabow, WOK; Pavlov, DN. Detection of enteroviruses in untreated and treated drinking water supplies in South Africa. Water Res 2005, 39, 2253–2258. [Google Scholar]
- Vivier, JC; Ehlers, MM; Grabow, WOK. Detection of enteroviruses in treated drinking water. Water Res 2004, 38, 2699–2705. [Google Scholar]
- Zhang, K; Farahbakhsh, K. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: Implications to water reuse. Water Res 2007, 41, 2816–2824. [Google Scholar]
- Arraj, A; Bohatier, J; Laveran, H; Traore, O. Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants. J. Appl. Microbiol 2005, 98, 516–524. [Google Scholar]
- Charles, KJ; Souter, FC; Baker, DL; Davies, CM; Schijven, JF; Roser, DJ; Deere, DA; Priscott, PK; Ashbolt, NJ. Fate and transport of viruses during sewage treatment in a mound system. Water Res 2008, 42, 3047–3056. [Google Scholar]
- Gersberg, RM; Lyon, SR; Brenner, R; Elkins, BV. Performance of a clay-alum flocculation (CCBA) process for virus removal from municipal wastewater. Water Res 1988, 22, 1449–1454. [Google Scholar]
- Zhu, B; Clifford, DA; Chellam, S. Virus removal by iron coagulation–microfiltration. Water Res 2005, 39, 5153–5161. [Google Scholar]
- Schijven, JF; Hassanizadeh, SM. Removal of viruses by soil passage: overview of modeling, processes and parameters. Critical Revs. Environ. Sci. & Tech 2000, 30, 49–127. [Google Scholar]
- Olson, MR; Axler, RP; Hicks, RE; Henneck, JR; McCarthy, BJ. Seasonal virus removal by alternative onsite wastewater treatment systems. J. Water Health 2005, 3, 139–155. [Google Scholar]
- Cho, M; Chung, H; Yoon, J. Disinfection of water containing natural organic matter by using Ozone-initiated radical reactions. Appl. Environ. Microbiol 2003, 69, 2284–2291. [Google Scholar]
- Kurosaki, Y; Abe, H; Morioka, H; Hirayama, J; Ikebuchi, K; Kamo, N; Nikaido, O; Azuma, H; Ikeda, H. Pyrimidine Dimer formation and Oxidative damage in M13 bacteriophage inactivation by Ultraviolet C irradiation. Photochem. Photobiol 2007, 78, 349–354. [Google Scholar]
- Gehr, R; Wagner, M; Veerasubramanian, P; Payment, P. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res 2003, 37, 4573–4586. [Google Scholar]
- Templeton, MR; Andrews, RC; Hofmann, R. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection. Water Res 2007, 41, 2393–2406. [Google Scholar]
- Tree, JA; Adams, MR; Lees, DN. Chlorination of indicator bacteria and viruses in primary sewage effluent. Appl. Environ. Microbiol 2003, 69, 2038–2043. [Google Scholar]
- Armon, R; Cabelli, VJ; Duncanson, R. Survival of F-RNA Coliphages and three bacterial indicators during wastewater chlorination and transport in estuarine waters. Estuaries Coasts 2007, 30, 1088–1094. [Google Scholar]
- Meng, QS; Gerba, CP. Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation. Water Res 1996, 30, 2665–2668. [Google Scholar]
- Thurston-Enriquez, JA; Haas, CN; Jacangelo, J; Gerba, CP. Inactivation of enteric adenovirus and feline Calicivirus by chlorine dioxide. Appl. Environ. Microbiol 2005, 71, 3100–3105. [Google Scholar]
- Griffin, DW; Donaldson, KA; Paul, JH; Rose, JB. Pathogenic human viruses in coastal waters. Clin. Microbiol. Revs 2003, 16, 129–143. [Google Scholar]
- Goyal, SM; Adams, WN; O’Malley, ML; Lear, DW. Human pathogenic viruses at sewage sludge disposal sites in the Middle Atlantic region. Appl. Environ. Microbiol 1984, 48, 758–763. [Google Scholar]
- Borchardt, MA; Bertz, PD; Spencer, SK; Battigelli, DA. Incidence of enteric viruses in groundwater from household wells in Wisconsin. Appl. Environ. Microbiol 2003, 69, 1172–1180. [Google Scholar]
- van Heerden, J; Ehlers, MM; Grabow, WOK. Detection and risk assessment of adenoviruses in swimming pool water. J. Appl. Microbiol 2005, 99, 1256–1264. [Google Scholar]
- Fout, GS; Martinson, BC; Moyer, MWN; Dahling, DR. A multiplex reverse transcription-PCR method for detection of human enteric viruses in groundwater. Appl. Environ. Microbiol 2003, 69, 3158–3164. [Google Scholar]
- Xagoraraki, I; Kuo, DHW; Wong, K; Wong, M; Rose, JB. Occurrence of human adenoviruses at two recreational beaches of the great lakes. Appl. Environ. Microbiol 2007, 73, 7874–7881. [Google Scholar]
- Mocé-Llivina, L; Lucena, F; Jofre, J. Enteroviruses and bacteriophages in bathing Waters. Appl. Environ. Mic 2005, 71, 6838–6844. [Google Scholar]
- Kukkula, M; Maunula, L; Silvennoinen, E; von Bonsdorff, CH. Outbreak of viral gastroenteritis due to drinking water contaminated by Norwalk-like viruses. J. Inf. Dis 1999, 180, 1771–1776. [Google Scholar]
- Le Guyader, FS; Mittelholzer, C; Haugarreau, L; Hedlund, KO; Alsterlund, R; Pommepuy, M; Svensson, L. Detection of noroviruses in raspberries associated with a gastroenteritis outbreak. Int. J. Food Microbiol 2004, 97, 179–186. [Google Scholar]
- Grotto, I; Huerta, M; Balicer, RD; Halperin, T; Cohen, D; Orr, N; Gdalevich, M. An outbreak of Norovirus gastroenteritis on an Israeli military base. Infection 2004, 32, 339–343. [Google Scholar]
- Harris, LJ; Farber, JN; Beuchat, LR; Parish, ME; Suslow, TV; Garrett, EH; Busta, FF. Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Comp. Revs. Food Sci. Food Saf 2006, 2, 78–141. [Google Scholar]
- Richards, GP. Food-borne pathogens. Enteric virus contamination of foods through industrial practices: a primer on intervention strategies. J. Ind. Microbiol. Biotech 2001, 27, 117–125. [Google Scholar]
- Chironna, M; Lopalco, P; Prato, R; Germinario, C; Barbuti, S; Quarto, M. Outbreak of infection with Hepatitis A Virus (HAV) associated with a foodhandler and confirmed by sequence analysis reveals a new HAV Genotype IB variant. J. Clin. Microbiol 2004, 42, 2825–2828. [Google Scholar]
- Martinez, A; Dominguez, A; Torner, N; Ruiz, L; Camps, N; Barrabeig, I; Arias, C; Alvarez, J; Godoy, P; Balaña, PJ; Pumares, A; Bartolome, R; Ferrer, D; Perez, U; Pinto, R; Buesa, J. The Catalan viral Gastroenteritis study group: epidemiology of foodborne norovirus outbreaks in Catalonia, Spain. BMC Inf. Dis 2008, 8, 47. [Google Scholar]
- Le Guyader, FS; Bon, F; DeMedici, D; Parnaudeau, S; Bertone, A; Crudeli, S; Doyle, A; Zidane, M; Suffredini, E; Kohli, E; Maddalo, F; Monini, M; Gallay, A; Pommepuy, M; Pothier, P; Ruggeri, FM. Detection of multiple noroviruses associated with an international gastroenteritis outbreak linked to oyster consumption. J. Clin. Microbiol 2006, 44, 3878–3882. [Google Scholar]
- Rehnstam-Holm, AS; Hernroth, B. Shellfish and public health: A Swedish perspective. AMBIO: J. Human Environ 2005, 34, 139–144. [Google Scholar]
- Sincero, TCM; Levin, DB; Simões, CMO; Barardi, CRM. Detection of hepatitis A virus (HAV) in oysters (Crassostrea gigas). Water Res 2006, 40, 895–902. [Google Scholar]
- Huppatz, C; Munnoch, SA; Worgan, T; Merritt, TD; Dalton, C; Kelly, PM; Durrheim, DN. A norovirus outbreak associated with consumption of oysters: implications for quality assurance systems. CDI 2008, 32, 88–91. [Google Scholar]
- Karamoko, Y; Ibenyassine, K; Mhand, RA; Idaoma, M; Ennaji, MM. Assessment of enterovirus contamination in mussel samples from Morocco. World J. Microbiol. Biotech 2006, 22, 105–108. [Google Scholar]
- Santo Domingo, JW; Edge, TA. Identification of primary sources of faecal pollution. In Safe Management of Shellfish and Harvest Waters; Rees, G, Pond, K, Kay, D, Bartram, J, Santo Domingo, J, Eds.; World Health Organization, (WHO), ISBN: 9781843392255; IWA Publishing: London, UK, 2010; pp. 51–90. [Google Scholar]
- Halliday, ML; Kang, LY; Zhou, TK; Hu, MD; Pan, QC; Fu, TY; Huang, YS; Hu, SL. An epidemic of hepatitis a attributable to the ingestion of raw clams in Shanghai, China. J. Infect. Dis 1991, 164, 852–859. [Google Scholar]
- Tang, YW; Wang, JX; Xu, ZY; Guo, YF; Qian, WH; Xu, JX. A serological confirmed, case-control study, of a large outbreak of hepatitis A in China, associated with consumption of clams. Epidemiol. Inf 1991, 107, 651–657. [Google Scholar]
- Potasman, I; Paz, A; Odeh, M. Infectious outbreak associated with bivalve shellfish consumption: a worldwide perspective. Clin. Inf. Dis 2002, 35, 921–928. [Google Scholar]
- Sair, AI; D’Souza, DH; Jaykus, LA. Human enteric viruses as causes of foodborne diseases. Comp. Revs. Food Sci. Food Saf 2002, 1, 73–89. [Google Scholar]
- von Sperling, M; Chernicharo, CAL. Urban wastewater treatment technologies and the implementation of discharge standards in developing countries. Urban Water 2002, 4, 105–114. [Google Scholar]
- Girones, R. Tracking viruses that contaminate environments using PCR to track stable viruses provides an effective means for monitoring water quality for environmental contaminants. Microbe 2006, 1, 19–25. [Google Scholar]
- Dongdem, JT; Soyiri, I; Ocloo, A. Public health significance of viral contamination of drinking water. Afr. J. Microbiol. Res 2009, 3, 856–861. [Google Scholar]
- Chapron, CD; Ballester, NA; Fontaine, JH; Frades, CN; Margolin, AB. Detection of astroviruses, enteroviruses and adenovirus types 40 and 41 in surface waters collected and evaluated by the information collection rule and an integrated cell culture-nested PCR procedure. Appl. Environ. Microbiol 2000, 66, 2520–2525. [Google Scholar]
- Bofill-Mas, S; Albinana-Gimenez, N; Clemente-Casares, P; Hundesa, A; Rodriguez-Manzano, J; Allard, A; Calvo, M; Girones, R. Quantification and stability of human adenoviruses and Polyomavirus JCPyV in wastewater matrices. Appl. Environ. Microbiol 2006, 72, 7894–7896. [Google Scholar]
- Griffin, JS; Plummer, JD; Long, SC. Torque teno virus: an improved indicator for viral pathogens in drinking waters. Virol. J 2008, 5, 1–6. [Google Scholar]
© 2007 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Okoh, A.I.; Sibanda, T.; Gusha, S.S. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment. Int. J. Environ. Res. Public Health 2010, 7, 2620-2637. https://doi.org/10.3390/ijerph7062620
Okoh AI, Sibanda T, Gusha SS. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment. International Journal of Environmental Research and Public Health. 2010; 7(6):2620-2637. https://doi.org/10.3390/ijerph7062620
Chicago/Turabian StyleOkoh, Anthony I., Thulani Sibanda, and Siyabulela S. Gusha. 2010. "Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment" International Journal of Environmental Research and Public Health 7, no. 6: 2620-2637. https://doi.org/10.3390/ijerph7062620
APA StyleOkoh, A. I., Sibanda, T., & Gusha, S. S. (2010). Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment. International Journal of Environmental Research and Public Health, 7(6), 2620-2637. https://doi.org/10.3390/ijerph7062620