Selected Morphological Characteristics, Lead Uptake and Phytochelatin Synthesis by Coffeeweed (Sesbania exaltata Raf.) Grown in Elevated Levels of Lead-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Preparation
2.2. Sowing of Seeds
2.3. Plant Establishment and Maintenance
2.4. Measurement of Growth Parameters
2.5. Lead Extraction from Plant Tissues
2.6. Phytochelatin Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Root and Shoot Pb-Tissue Concentration
3.2. Root and Shoot Biomass
3.3. Root Length
3.4. Root Nodules
3.5. Shoot Heights
3.6. Leaves
3.7 Abscised
3.8. Flowers
3.9. Pods
3.10. Pod Lengths
3.11. Phytochelatin (PC) Assessment
4. Conclusions
Acknowledgments
References
- Ghnaya, AB; Charles, G; Hourmant, A; Hamida, JB; Branchard, M. Morphological and physiological characteristics of rapeseed plants regenerated in vitro from thin cell layers in the presence of zinc. C. R. Biol 2007, 330, 728–734. [Google Scholar]
- Cunningham, SD; Ow, WD. Promises and prospects of phytoremediation. Plant Physiol 1996, 110, 715–719. [Google Scholar]
- Kumar, PBAN; Dushenkov, V; Motto, H; Raskin, I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol 1995, 29, 1232–1238. [Google Scholar]
- Salt, DE; Smith, RD; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol 1998, 49, 643–668. [Google Scholar]
- Chaney, RL; Malik, M; Li, YM; Brown, SL; Brewer, EP; Angle, JS; Baker, AJM. Phytoremediation of soil metals. Curr. Opin. Biotechnol 1997, 8, 279–284. [Google Scholar]
- Norvell, WA; Wu, J; Hopkins, DG; Welch, RM. Association of cadmium in durum wheat grains with soil chloride and chelate-extractable soil cadmium. Soil Sci. Soc. Amer. J 2000, 64, 2162–2168. [Google Scholar]
- Lasat, MM. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual 2002, 31, 109–120. [Google Scholar]
- Ebbs, SD; Lasat, MM; Brady, DJ; Cornish, J; Gordon, R; Kochian, LV. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual 1997, 26, 1424–1430. [Google Scholar]
- Lombi, E; Zhao, FJ; Dunham, DJ; McGrath, SP. Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual 2001, 30, 1919–1926. [Google Scholar]
- Ernst, WHO. Bioavailability of heavy metals and decontamination of soil by plants. Appl. Geochem 1996, 11, 163–167. [Google Scholar]
- Öncel, I; Keles, Y; Üstün, AS. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ. Pollut 2000, 107, 315–320. [Google Scholar]
- Begonia, MFT; Begonia, GB; Miller, GS; Gilliard, D. Effects of chelate application time on the phytoextraction of lead-contaminated soils. Bull. Environ. Contam. Toxicol 2004, 73, 1033–1040. [Google Scholar]
- Peralta-Videa, JR; Lopez, ML; Narayan, M; Saupe, G; Gardea-Torresdea, J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell Biol 2009, 41, 1665–1675. [Google Scholar]
- Toxnet Hazardous substances data bank. National Library of Medicine’s TOXNET. Available online: http://www.toxnet.nlm.nih (accessed on 15 August 2006).
- Begonia, GB. Camparative lead uptake and responses of some plants grown on lead contaminated soils. J. Miss Acad. Sci 1997, 42, 101–106. [Google Scholar]
- Ghosh, S. A Search for lead Hyperaccumulating Plants and Laboratory Investigationtoward Enhancing Leaduptake. Ph. D. Dissertation; Jackson State University: Jackson, MS, USA, 1999. [Google Scholar]
- Begonia, GB; Begonia, MFT; Miller, G; Owens, J; Brown, M; Johnson, M; Burks, C. EDTA assisted phytoextraction of lead from contaminated soil using sesbania exaltata (raf.). Proc National Minority Res Symp 1999, 75. [Google Scholar]
- Begonia, GB; Begonia, MFT; Miller, GS; Kambhampati, M. Phytoremediation of metal-contaminated soils: Jackson state university research initiatives. Metal Ions in Biology and Medicina, Centeno, JA, Collery, P, Vernet, G, Finkelman, RB, Gibb, H, Etienne, JC, Eds.; 682–684.
- Begonia, GB; Miller, GS; Begonia, MFT; Burks, C. Chelate-enhanced phytoextraction of lead-contaminated soils using coffeeweed (sesbania exaltata raf.). Bull. Environ. Contam. Toxicol 2002, 69, 624–654. [Google Scholar]
- Hall, DW; Vandiver, VV; Ferrell, JA. Hemp sesbania, sesbania exaltata (raf) cory. University of Florida IFAS Extension. Available online: http://edis.ifas.ufl.edu/FW039 (accessed on 21 October 2008).
- WSSA, Weed Identification Guide; Weed Science Society of America: Champaign, IL, USA, 1990.
- Grill, E; Löffler, S; Winnacker, E-L; Zenk, MH. Phytochelatins, the heavy-metal-binding peptides of plants, are synthensized from glutathione by a specific y-glutamylcysteine depeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. U. S. A 1989, 86, 6838–6842. [Google Scholar]
- Hartley-Whitaker, J; Ainsworth, G; Vooijs, R; Bookum, WT; Schat, H; Meharg, AA. Phytochalatins are involved in differential arsenate tolerance in holcus lanatus. Plant Physiol 2001, 126, 299–306. [Google Scholar]
- Grill, E; Winnacker, EL; Zenk, MH. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. U. S. A 1987, 84, 439–443. [Google Scholar]
- USDA-NRCS, Soil taxonomy—A basic system of soil classification for making and interpreting soil surveys. In Soil Survey Staff Agriculture Handbook No 436; Natural Resources Conservation Service: Washington, DC, USA, 1999.
- Keltjens, WG; van Beusichem, ML. Phytochelatins as biomarkers for heavy metal toxicity in maize: Single metal effects of copper and cadmium. J. Plant Nutr 1998, 21, 635–648. [Google Scholar]
- Anderson, ME. Tissue glutathione. In Handbook of Methods for Oxygen Radical Research; Greenwald, RA, Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 317–323. [Google Scholar]
- Grill, E; Winnacker, EL; Zenk, MH. Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science 1985, 230, 674–676. [Google Scholar]
- Miller, GS; Begonia, GB; Begonia, MFT; Ntoni, J. Bioavailability and uptake of lead by coffeeweed (sesbania exaltata raf.). Int. J. Env. Res. Public Health 2008, 5, 436–440. [Google Scholar]
- Tessier, A; Campbell, PGC; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 1979, 51, 844–851. [Google Scholar]
- Baker, AJM; McGrath, SP; Reeves, RD; Smith, JAC. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soil and Water; Terry, N, Banuelos, G, Eds.; Lewis Publishers: New York, NY, USA, 2000. [Google Scholar]
- McGrath, SP; Dunham, SJ; Correll, RL. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In Phytoremediation of Contaminated Soil and Water; Terry, N, Bañuelos, G, Eds.; Lewis Publishers: New York, NY, USA, 2000. [Google Scholar]
- Baker, AJM. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr 1981, 3, 643–654. [Google Scholar]
- Huey, RB; Carlson, M; Crozier, L; Frazier, M; Hamilton, H; Harley, C; Hoang, A; Kingsolver, JG. Plants versus animals: Do they deal with stress in different ways? Integ. Comp. Biol 2002, 42, 415–423. [Google Scholar]
- Moore, R; Clark, WD; Vodopich, DS. Botany. WCB/McGraw-Hill: Boston, MA, USA, 1998; p. 562. [Google Scholar]
- Fuhrmann, M; Lasat, MM; Ebbs, SD; Kochian, LV; Cornish, J. Plant and environmental interactions: Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation. J. Environ. Qual 2002, 31, 904–909. [Google Scholar]
- Cottonie, A; Dhaese, A; Camerlync, R. Plant quality response to uptake of polluting elements. Qualitas Plantarum - Plant Food. Hum. Nutr 1976, 26, 293–319. [Google Scholar]
- Liang, Y; Harris, JM. Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. Am. J. Bot 2005, 92, 1675–1683. [Google Scholar]
- Tripathi, RD; Rai, UN; Gupta, M; Chandra, P. Induction of phytochelatins in hydrilla verticillata (l.F.) royle under cadmium stress. Bull. Environ. Contam. Toxicol 1996, 56, 505–512. [Google Scholar]
- Steffens, JC. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol 1990, 41, 553–575. [Google Scholar]
- Banuelos, GS. Factors inluencing field phytoremediation of selenium-laden soils. In Phytoremediaiton of Contaminated Soil and Water; Terry, N, Banuelos, G, Eds.; Lewis Publishers: New York, NY, USA, 2000. [Google Scholar]
Characteristic | Extractable levels (kg/ha) |
---|---|
Soil acidity (pH) | 6.3 |
Phosphorus | 146* |
Potassium | 337* |
Calcium | 5081 |
Magnesium | 813** |
Zinc | 4.7* |
Sodium | 180 |
CEC | 17.6 |
% Clay | 7.50 |
% Silt | 80.08 |
% Sand | 12.4 |
Mg Pb/Kg soil *EDTA | Parameters after each harvest | |||
---|---|---|---|---|
Six weeks of growth | ||||
RRRb | Rl | N RPb | ||
0 | 28.25 c | 10.95 ab | 4.38 a | 0 c |
0 * | 31.62 c | 9.68 b | 5.38 a | 0 c |
1000 | 61.75 a | 16.51 a | 4.00 a | 1030.0 abc |
1000 * | 52.25 ab | 16.03 a | 6.00 a | 1276.0 abc |
2000 | 38.62 bc | 13.65 ab | 0 a | 3676.0 a |
2000 * | 32.37 bc | 12.70 ab | 1.00 a | 3068.0 ab |
Eight weeks of growth | ||||
Rb | Rl | N | RPb | |
0 | 51.38 a | 11.59 bc | 6.50 a | 0 b |
0 * | 36.08 a | 10.16 c | 5.12 a | 0 b |
1000 | 43.40 a | 14.60 ab | 4.83 a | 683.3 b |
1000 * | 51.68 a | 16.72 a | 1.83 a | 822.2 b |
2000 | 47.59 a | 14.76 ab | 0a | 3645.9 a |
2000 * | 58.28 a | 11.59 bc | 0a | 3609.5 a |
Ten weeks of growth | ||||
Rb | Rl | N | RPb | |
0 | 54.25 a | 10.95 a | 6.75 a | 0c |
0 * | 54.38 a | 9.52 a | 6.33 a | 0c |
1000 | 49.88 a | 11.90 a | 10.00 a | 1099.7 bc |
1000 * | 52.00 a | 10.64 a | 1.00 a | 608.5 bc |
2000 | 32.50 a | 9.52 a | 0.65 a | 2417.5 b |
2000 * | 40.75 a | 9.20 a | 0a | 4582.6 a |
mg Pb/kg soil *EDTA | Parameters after each harvest | |||||||
---|---|---|---|---|---|---|---|---|
Six weeks of growth | ||||||||
Sb | Sh | L | A | F | P | Pl | SPb | |
0 | 168.62 b | 28.57 b | 11.63a | 5.25 a | 0.67 a | 0.87 a | 5.93 a | 0c |
0 * | 190.75 ab | 27.62 ab | 12.13 a | 6.37 a | 0.75 a | 0.87 a | 6.67 a | 0c |
1000 | 285.62 a | 34.13 a | 13.25 a | 7.50 a | 0.87 a | 1.00 a | 6.67 a | 85.35 b |
1000 * | 215.62 ab | 28.89 a | 12.00 a | 4.87 a | 1.00 a | 1.00 a | 7.30 a | 103.95 ab |
2000 | 214.62 ab | 29.69 a | 13.00 a | 6.25 a | 0.75 a | 0.87 a | 7.93 a | 142.83 a |
2000 * | 211.87 ab | 26.19 a | 12.12 a | 7.25 a | 0.83 a | 0.87 a | 7.19 a | 119.82 ab |
Eight weeks of growth | ||||||||
Sb | Sh | L | A | F | P | Pl | SPb | |
0 | 394.37 a | 42.55 a | 12.75 b | 5.87 a | 1.87 a | 0.67 a | 6.82 ab | 0c |
0 * | 239.62 a | 33.97 ab | 13.12 b | 5.37 a | 1.87 a | 0.62 a | 8.04 b | 0c |
1000 | 303.25 a | 37.15 ab | 13.62 b | 6.37 a | 1.33 a | 0.83 a | 6.77 ab | 44.64 bc |
1000 * | 368.37 a | 41.43 ab | 16.50 a | 5.25 a | 1.12 a | 0.67 a | 4.76 ab | 83.75 ab |
2000 | 341.87 a | 32.23 b | 11.37 b | 5.00 a | 1.25 a | 0.75 a | 7.14 ab | 131.77 a |
2000 * | 385.87 a | 36.83 ab | 13.50 b | 6.37 a | 1.50 a | 0.87 a | 9.37 a | 134.28 a |
Ten weeks of growth | ||||||||
Sb | Sh | L | A | F | P | Pl | SPb | |
0 | 340.12 abc | 51.12 a | 14.75 ab | 7.75 a | 1.50 a | 0.50 a | 3.39 a | 0c |
0 * | 482.00 a | 50.96 a | 15.12 ab | 7.62 a | 1.75 a | 0.50 a | 4.02 a | 0c |
1000 | 439.37 ab | 58.04 a | 16.50 a | 8.75 a | 1.67 a | 0.50 a | 3.17 a | 78.37 bc |
1000 * | 420.50 abc | 56.20 a | 16.62 a | 8.25 a | 1.50 a | 0.50 a | 4.28 a | 65.72 bc |
2000 | 251.75 bc | 31.91 b | 12.37 b | 6.62 a | 1.50 a | 0.67 a | 4.66 a | 125.56 b |
2000 * | 244.12 c | 35.24 b | 11.87 b | 6.50 a | 0.67 a | 0.67 a | 4.02 a | 256.26 a |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Miller, G.; Begonia, G.; Begonia, M.F.T. Selected Morphological Characteristics, Lead Uptake and Phytochelatin Synthesis by Coffeeweed (Sesbania exaltata Raf.) Grown in Elevated Levels of Lead-Contaminated Soil. Int. J. Environ. Res. Public Health 2011, 8, 2401-2417. https://doi.org/10.3390/ijerph8062401
Miller G, Begonia G, Begonia MFT. Selected Morphological Characteristics, Lead Uptake and Phytochelatin Synthesis by Coffeeweed (Sesbania exaltata Raf.) Grown in Elevated Levels of Lead-Contaminated Soil. International Journal of Environmental Research and Public Health. 2011; 8(6):2401-2417. https://doi.org/10.3390/ijerph8062401
Chicago/Turabian StyleMiller, Gloria, Gregorio Begonia, and Maria F. T. Begonia. 2011. "Selected Morphological Characteristics, Lead Uptake and Phytochelatin Synthesis by Coffeeweed (Sesbania exaltata Raf.) Grown in Elevated Levels of Lead-Contaminated Soil" International Journal of Environmental Research and Public Health 8, no. 6: 2401-2417. https://doi.org/10.3390/ijerph8062401
APA StyleMiller, G., Begonia, G., & Begonia, M. F. T. (2011). Selected Morphological Characteristics, Lead Uptake and Phytochelatin Synthesis by Coffeeweed (Sesbania exaltata Raf.) Grown in Elevated Levels of Lead-Contaminated Soil. International Journal of Environmental Research and Public Health, 8(6), 2401-2417. https://doi.org/10.3390/ijerph8062401