Pilot Study of Pesticide Knowledge, Attitudes, and Practices among Pregnant Women in Northern Thailand
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Questionnaire Design and Administration
2.3. KAP Scoring
2.4. Statistical Analyses
2.4.1. Descriptive Statistics
2.4.2. Univariate and Multivariable Logistic Regression Models
2.4.3. Elucidating Targets for Intervention
All Participants (n = 76) (Mean (SD #)/N (%)) | Agricultural Workers (n = 34) (Mean (SD)/N (%)) | Non-Agricultural Workers (n = 42) (Mean (SD)/N (%)) | p-value (Test) for Significant Differences ^ | ||
---|---|---|---|---|---|
Age (years) | 26.0 (6.8) | 26.6 (7.0) | 26.1 (6.7) | 0.77 (t-test) | |
Ethnicity | 0.001 * (Fisher’s) | ||||
Thai | 34 (45%) | 8 (24%) | 26 (62%) | ||
Thai Yai | 31 (41%) | 20 (59%) | 11 (26%) | ||
Burmese | 2 (3%) | 2 (6%) | 0 (0%) | ||
Chinese | 2 (3%) | 0 (0%) | 2 (5%) | ||
Other | 7 (9%) | 4 (12%) | 3 (7%) | ||
Born in Thailand | 46 (61%) | 14 (41%) | 32 (76%) | 0.002 * (chi-sq) | |
Highest level of education achieved | <0.001 * (Fisher’s) | ||||
None, never attended school | 33 (43%) | 23 (68%) | 10 (24%) | ||
Primary school | 12 (16%) | 5 (15%) | 7 (17%) | ||
Junior high school | 10 (13%) | 1 (3%) | 9 (21%) | ||
High school (no diploma) | 15 (20%) | 5 (15%) | 10 (24%) | ||
High school diploma or greater | 6 (8%) | 0 (0%) | 6 (14%) | ||
Household monthly income † | 0.002 * (Fisher’s) | ||||
1,500 Baht or less (≤49 USD) | 2 (3%) | 2 (6%) | 0 (0%) | ||
1,501 to 3,000 Baht (50–99 USD) | 6 (8%) | 4 (12%) | 2 (5%) | ||
3,001 to 6,000 Baht (100–199 USD) | 22 (29%) | 13 (38%) | 9 (21%) | ||
6,001 to 9,000 Baht (200–299 USD) | 21 (28%) | 8 (24%) | 13 (31%) | ||
9,001 to 12,000 Baht (300–399 USD) | 13 (17%) | 1 (3%) | 12 (29%) | ||
12,001 Baht and above (≥400 USD) | 6 (8%) | 1 (3%) | 5 (12%) | ||
Don’t know/Not sure | 6 (8%) | 5 (15%) | 1 (2%) | ||
Pregnancy trimester | 0.053 (chi-sq) | ||||
1st | 21 (28%) | 14 (41%) | 7 (17%) | ||
2nd | 25 (33%) | 10 (29%) | 15 (36%) | ||
3rd | 30 (39%) | 10 (29%) | 20 (48%) | ||
Number of pregnancies before current pregnancy | 0.62 (chi-sq) | ||||
0 | 29 (38%) | 13 (38%) | 16 (38%) | ||
1 | 30 (39%) | 15 (44%) | 15 (36%) | ||
2 or 3 | 17 (22%) | 6 (18%) | 11 (26%) | ||
Worked since becoming pregnant | 66 (87%) | 34 (100%) | 32 (76%) | 0.002 * (Fisher’s) | |
Worked in agriculture since becoming pregnant | 34 (45%) | 34 (100%) | N/A | N/A |
3. Results
3.1. Descriptive Statistics
All Participants (n = 76) (N (%)) | Agricultural Workers (n = 34) (N (%)) | Non-Agricultural Workers (n = 42) (N (%)) | p-value (Test) for Significant Differences ^ | ||
---|---|---|---|---|---|
Occupational | |||||
Personally applied pesticides at work since becoming pregnant | 8 (11%) | 8 (24%) | 0 (0%) | 0.005 * (Fisher’s) | |
Had a job where pesticides were applied since becoming pregnant | 23 (30%) | 23 (68%) | 0 (0%) | <0.0001 * (chi-sq) | |
Worked in a job involving potential pesticide exposure before becoming pregnant | 46 (61%) | 33 (97%) | 13 (31%) | <0.0001 * (chi-sq) | |
Residential | |||||
Pesticides used in the home since becoming pregnant | 39 (51%) | 16 (47%) | 23 (55%) | 0.50 (chi-sq) | |
Pesticides used in the home before becoming pregnant | 43 (57%) # | 16 (47%) | 27 (66%) # | 0.10 (chi-sq) | |
Personally applied pesticides in the home since becoming pregnant | 21 (28%) | 9 (26%) | 12 (29%) | 0.84 (chi-sq) | |
Personally applied pesticides in the home before becoming pregnant | 26 (34%) | 10 (29%) | 16 (38%) | 0.43 (chi-sq) | |
Personally applied pesticides on pets since becoming pregnant | 15 (20%) | 4 (12%) | 11 (26%) | 0.12 (chi-sq) |
All Participants (n = 76) | Agricultural Workers (n = 34) | Non-Agricultural Workers (n = 42) | p-value (Test) for Significant Differences ^ | ||
---|---|---|---|---|---|
Knowledge Score (0–1) | |||||
Mean (SD) | 0.84 (0.07) | 0.82 (0.07) | 0.85 (0.07) | 0.10 (Wilcoxon) | |
Median (IQR #) | 0.86 (0.10) | 0.84 (0.10) | 0.86 (0.10) | ||
N (%) above median (0.86) | 41 (54%) | 16 (47%) | 25 (60%) | 0.28 (chi-sq) | |
Personal Susceptibility Attitudes Score (0–4) | |||||
Mean (SD) | 3.4 (1.3) | 3.2 (1.5) | 3.6 (1.0) | 0.44 (Wilcoxon) | |
Median (IQR) | 4.0 (0.0) | 4.0 (1.0) | 4.0 (0.0) | ||
Child Susceptibility Attitudes Score (0–8) | |||||
Mean (SD) | 7.0 (1.8) | 6.8 (2.0) | 7.2 (1.7) | 0.60 (Wilcoxon) | |
Median (IQR) | 8.0 (2.0) | 8.0 (3.0) | 8.0 (1.0) | ||
Responsibility Attitudes Score (0–12) | |||||
Mean (SD) | 10.4 (2.0) | 9.5 (2.3) | 11.1 (1.2) | 0.001 * (Wilcoxon) | |
Median (IQR) | 11.0 (2.0) | 10.0 (4.0) | 12.0 (2.0) | ||
Usefulness Attitudes Score (0–13) | |||||
Mean (SD) | 5.2 (2.5) | 5.4 (2.9) | 4.9 (2.0) | 0.61 (t-test) | |
Median (IQR) | 5.0 (4.0) | 4.5 (4.0) | 5.5 (3.0) | ||
Risky Behaviors at Work Score (0–3) | |||||
Mean (SD) | N/A | 0.56 (0.66) | N/A | N/A | |
Median (IQR) | N/A | 0.0 (1.0) | N/A | ||
N (%) with at least one risky behavior at work | N/A | 16 (47%) | N/A | N/A | |
Risky Behaviors at Home Score (0–7) | |||||
Mean (SD) | 1.4 (1.3) | 1.9 (1.2) | 1.0 (1.2) | 0.002 * (Wilcoxon) | |
Median (IQR) | 1.0 (2.0) | 2.0 (2.0) | 1.0 (1.0) | ||
N (%) with at least one risky behavior at home | 55 (72%) | 30 (88%) | 25 (60%) | 0.005 * (chi-sq) |
Outcome Variable Tested | Odds Ratio | 95% Confidence Interval | Parameter Estimate | Standard Error | p-value (Wald chi-sq test) | p-value (Likelihood Ratio test) | |
---|---|---|---|---|---|---|---|
A. Risky behaviors at work (n = 34) ^ | 0.20 | ||||||
Knowledge score | 1.1 | (0.9, 1.4) | 0.13 | 0.11 | 0.21 | ||
Intercept | N/A | N/A | -5.41 | 4.28 | 0.21 | ||
B. Risky behaviors at work (n=34) ^ | 0.68 | ||||||
Pregnancy trimester (1st/2nd or 3rd) | 0.8 | (0.2, 3.0) | -0.29 | 0.70 | 0.68 | ||
Intercept | N/A | N/A | 0.00 | 0.45 | 1.00 | ||
C. Risky behaviors at work (n = 34) ^ | 0.01 * | ||||||
Number of risky behaviors at home | 2.2 | (1.1, 4.5) | 0.79 | 0.36 | 0.03 | ||
Intercept | N/A | N/A | -1.62 | 0.78 | 0.04 | ||
D. Risky behaviors at home (n = 76) | 0.09 | ||||||
Knowledge score | 0.9 | (0.7, 1.0) | -0.14 | 0.08 | 0.10 | ||
Intercept | N/A | N/A | 6.68 | 3.54 | 0.06 | ||
E. Risky behaviors at home (n = 76) | 0.02 * | ||||||
Pregnancy trimester (1st/2nd or 3rd) | 5.0 | (1.1, 23.9) | 1.61 | 0.80 | 0.04 | ||
Intercept | N/A | N/A | 0.64 | 0.28 | 0.02 | ||
F. Risky behaviors at home (n = 76) | 0.04 * | ||||||
Pregnancy trimester (1st/2nd or 3rd) | 4.1 | (0.8, 20.6) | 1.42 | 0.82 | 0.08 | ||
Education (some/none) | 0.6 | (0.2, 1.8) | -0.54 | 0.58 | 0.35 | ||
Intercept | N/A | N/A | 1.02 | 0.51 | 0.04 | ||
G. Risky behaviors at home (n = 76) | <0.01 * | ||||||
Farmwork before pregnant (yes/no) | 9.5 | (2.2, 41.8) | 2.25 | 0.76 | <0.01 | ||
Pesticides applied before pregnant (yes/no) | 12.2 | (2.0, 75.1) | 2.5 | 0.93 | 0.01 | ||
Previous child (yes/no) | 4.1 | (1.0, 15.7) | 1.4 | 0.69 | 0.04 | ||
Child's susceptibility score (high/low) | 5.8 | (1.4, 24.7) | 0.76 | 0.74 | 0.02 | ||
Intercept | N/A | N/A | -2.6 | 0.91 | <0.01 |
3.2. Univariate and Multivariable Regression Models
3.3. Elucidating Targets for Intervention
4. Discussion
4.1. Pesticide Knowledge, Attitudes, and Practices in the Study Population
4.2. Knowledge and Pregnancy Trimester: Associations with Pesticide Practices
4.3. Targets for Intervention
4.4. Study Limitations
5. Conclusions and Recommendations
Acknowledgments
Conflict of Interest
Supplementary Files
References
- Alavanja, M.C.; Hoppin, J.A.; Kamel, F. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Ann. Rev. Publ. Health 2004, 25, 155–197. [Google Scholar] [CrossRef]
- Whyatt, R.M.; Barr, D.B.; Camann, D.E.; Kinney, P.L.; Barr, J.R.; Andrews, H.F.; Hoepner, L.A.; Garfinkel, R.; Hazi, Y.; Reyes, A.; et al. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ. Health Perspect. 2003, 111, 749–756. [Google Scholar]
- Barr, D.B.; Bishop, A.; Needham, L.L. Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod. Toxicol. 2007, 23, 260–266. [Google Scholar] [CrossRef]
- Barr, D.B.; Bradman, A.; Freeman, N.; Whyatt, R.M.; Wang, R.Y.; Naeher, L.; Eskenazi, B. Studying the Relation between Pesticide Exposure and Human Development. In Human Developmental Neurotoxicology; Bellinger, D.C., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 253–285. [Google Scholar]
- Bjorling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008, 7. [Google Scholar]
- Eddleston, M.; Karalliedde, L.; Buckley, N.; Fernando, R.; Hutchinson, G.; Isbister, G.; Konradsen, F.; Murray, D.; Piola, J.C.; Senanayake, N.; et al. Pesticide poisoning in the developing world—A minimum pesticides list. Lancet 2002, 360, 1163–1167. [Google Scholar]
- Ecobichon, D.J. Pesticide use in developing countries. Toxicology 2001, 160, 27–33. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Singh, N. Pesticide use and application: An Indian scenario. J. Hazard Mater. 2009, 165, 1–12. [Google Scholar] [CrossRef]
- Ngowi, A.V.F.; Wesseling, C.; London, L. Health Impacts in Developing Countries. In Encyclopedia of Pest Management; Pimentel, D., Ed.; Taylor & Francis: New York, NY, USA, 2007; Volume 2, pp. 228–231. [Google Scholar]
- Thailand Pesticide Control Department, POPs Pesticide Inventory Report; Pesticide Control Department: Bangkok, Thailand, 2005.
- Thailand National Statistical Office, 2003 Agricultural Census; Ministry of Information and Communication Technology: Bangkok, Thailand, 2003.
- Kachaiyaphum, P.; Howteerakul, N.; Sujirarat, D.; Siri, S.; Suwannapong, N. Serum cholinesterase levels of Thai chilli-farm workers exposed to chemical pesticides: Prevalence estimates and associated factors. J. Occup. Health 2010, 52, 89–98. [Google Scholar] [CrossRef]
- Thailand Ministry of Public Health, Annual Epidemiological Surveillance Report 2007; Thailand Ministry of Public Health: Bangkok, Thailand, 2007.
- Thailand Ministry of Public Health, Thailand Health Profile Report 2005–2007; Thailand Ministry of Public Health: Bangkok, Thailand, 2007.
- Thailand National Statistical Office, Report of the Labour Force Survey; Ministry of Information and Communication Technology: Bangkok, Thailand, 2011.
- Hudak, P.F.; Thapinta, A. Agricultural pesticides in groundwater of Kanchana Buri, Ratcha Buri, and Suphan Buri Provinces, Thailand. B. Environ. Contam. Tox. 2005, 74, 631–636. [Google Scholar]
- Khan, D.A.; Hashmi, I.; Mahjabeen, W.; Naqvi, T.A. Monitoring health implications of pesticide exposure in factory workers in Pakistan. Environ. Monit. Assess. 2010, 168, 231–240. [Google Scholar] [CrossRef]
- Jintana, S.; Sming, K.; Krongtong, Y.; Thanyachai, S. Cholinesterase activity, pesticide exposure and health impact in a population exposed to organophosphates. Int. Arch. Occ. Env. Hea. 2009, 82, 833–842. [Google Scholar] [CrossRef]
- Alano, R.; Srinivasan, C.; Wiwatanadate, P.; Kaewpinta, B.; DiStefano, A. Pesticide Use among Farmers in Mae Tha, Thailand: Perceptions of Health Risk as a Determinant of Practice. In Presented at the Pan American Health Care Exchanges Conference, Lima, Peru, 15–19 March 2010.
- Inmuong, U.; Charerntanyarak, L.; Furu, P. Community perceptions of health determinants in Khon Kaen Province, Thailand. S. E. Asian J. Trop. Med. 2009, 40, 380–391. [Google Scholar]
- Janhong, K.; Lohachit, C.; Butraporn, P.; Pansuwan, P. Health promotion program for the safe use of pesticides in Thai farmers. S. E. Asian J. Trop. Med. 2005, 36 Suppl 4, 258–261. [Google Scholar]
- Buranatrevedh, S.; Sweatsriskul, P. Model development for health promotion and control of agricultural occupational health hazards and accidents in Pathumthani, Thailand. Ind. Health 2005, 43, 669–676. [Google Scholar] [CrossRef]
- Takser, L.; Mergler, D.; Baldwin, M.; de Grosbois, S.; Smargiassi, A.; Lafond, J. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environ. Health Perspect. 2005, 113, 1039–1045. [Google Scholar] [CrossRef]
- Noakes, P.S.; Taylor, P.; Wilkinson, S.; Prescott, S.L. The relationship between persistent organic pollutants in maternal and neonatal tissues and immune responses to allergens: A novel exploratory study. Chemosphere 2006, 63, 1304–1311. [Google Scholar] [CrossRef]
- Asawasinsopon, R.; Prapamontol, T.; Prakobvitayakit, O.; Vaneesorn, Y.; Mangklabruks, A.; Hock, B. The association between organochlorine and thyroid hormone levels in cord serum: A study from Northern Thailand. Environ. Int. 2006, 32, 554–559. [Google Scholar] [CrossRef]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Barr, D.B. Urinary pesticide metabolites in school students from Northern Thailand. Int. J. Hyg. Envir. Heal. 2009, 212, 288–297. [Google Scholar] [CrossRef]
- Population Division, United Nations Department of Economic and Social Affairs, World Population Prospects, The 2010 Revision: Volume II: Demographic Profiles; Population Division of United Nations: New York, NY, USA, 2011.
- Thailand National Statistical Office, The 2009 Labor Force Survey; Ministry of Information and Communication Technology: Bangkok, Thailand, 2009.
- Flocks, J.; Kelley, M.; Economos, J.; McCauley, L. Female farmworkers’ perceptions of pesticide exposure and pregnancy health. J. Immigr. Minor. Health 2012, 14, 626–632. [Google Scholar] [CrossRef]
- World Health Organization, A Guide to Developing Knowledge, Attitude, and Practice Surveys; WHO Press: Geneva, Switzerland, 2007.
- Recena, M.C.; Caldas, E.D.; Pires, D.X.; Pontes, E.R. Pesticides exposure in Culturama, Brazil—Knowledge, attitudes, and practices. Environ. Res. 2006, 102, 230–236. [Google Scholar] [CrossRef]
- Ntow, W.J.; Gijzen, H.J.; Kelderman, P.; Drechsel, P. Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag. Sci. 2006, 62, 356–365. [Google Scholar] [CrossRef]
- Farahat, T.M.; Farahat, F.M.; Michael, A.A. Evaluation of an educational intervention for farming families to protect their children from pesticide exposure. East. Mediterr. Health J. 2009, 15, 47–56. [Google Scholar]
- Naidoo, S.; London, L.; Rother, H.A.; Burdorf, A.; Naidoo, R.N.; Kromhout, H. Pesticide safety training and practices in women working in small-scale agriculture in South Africa. Occup. Environ. Med. 2010, 67, 823–828. [Google Scholar] [CrossRef]
- The World Bank, Pregnant Women Receiving Prenatal Care. In World Development Indicators, World dataBank; The World Bank: New York, NY, USA, 2012.
- Stuetz, W.; McGready, R.; Cho, T.; Prapamontol, T.; Biesalski, H.K.; Stepniewska, K.; Nosten, F. Relation of DDT residues to plasma retinol, alpha-tocopherol, and beta-carotene during pregnancy and malaria infection: A case-control study in Karen women in Northern Thailand. Sci. Total Environ. 2006, 363, 78–86. [Google Scholar] [CrossRef]
- Zimmermann, E.; Pedersen, J.O.; Saraubon, K.; Tjell, J.C.; Prapamontol, T. DDT in human milk from Chiang Mai mothers: A public health perspective on infants’ exposure. B. Environ. Contam. Tox. 2005, 74, 407–414. [Google Scholar] [CrossRef]
- Stuetz, W.; Prapamontol, T.; Erhardt, J.G.; Classen, H.G. Organochlorine pesticide residues in human milk of a Hmong hill tribe living in Northern Thailand. Sci. Total Environ. 2001, 273, 53–60. [Google Scholar] [CrossRef]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Olsson, A.O.; Barr, D.B. A pilot survey of pesticide specific urinary metabolites among farmers in Chiang Mai highland agriculture area. Chiang Mai University J. 2004, 3, 25–34. [Google Scholar]
- Sam, K.G.; Andrade, H.H.; Pradhan, L.; Pradhan, A.; Sones, S.J.; Rao, P.G.; Sudhakar, C. Effectiveness of an educational program to promote pesticide safety among pesticide handlers of South India. Int. Arch. Occ. Env. Hea. 2008, 81, 787–795. [Google Scholar] [CrossRef]
- Sorat, W. The Relationship between Health Belief, Pesticide Use and Safety Behaviors with Acute Poisoning Symptoms of Farmers, Chaiyaphum Province.
- CHAMACOS Study, Baseline Questionnaire, A White Paper on Measurement and Analysis of Exposures to Environmental Pollutants and Biological Agents during the National Children’s Study; National Children’s Study Federal Advisory Committee, Program Office and the Interagency Coordinating Committee: Bethesda, MD, USA, 2004; pp. B1–B81, Appendix B.
- Dasgupta, S.; Meisner, C.; Huq, M. Health Effects and Pesticide Perception as Determinants of Pesticide Use: Evidence from Bangladesh; World Bank Policy Research Working Paper No. 3776; The World Bank: New York, NY, USA, 2005. [Google Scholar]
- McCormack, L.A.; Garfinkel, S.A.; Hibbard, J.H.; Keller, S.D.; Kilpatrick, K.E.; Kosiak, B. Health insurance knowledge among medicare beneficiaries. Health Serv. Res. 2002, 37, 41–61. [Google Scholar] [CrossRef]
- Goldman, L.; Eskenazi, B.; Bradman, A.; Jewell, N.P. Risk behaviors for pesticide exposure among pregnant women living in farmworker households in Salinas, California. Am. J. Ind. Med. 2004, 45, 491–499. [Google Scholar] [CrossRef]
- Salvatore, A.L.; Bradman, A.; Castorina, R.; Camacho, J.; Lopez, J.; Barr, D.B.; Snyder, J.; Jewell, N.P.; Eskenazi, B. Occupational behaviors and farmworkers’ pesticide exposure: Findings from a study in Monterey County, California. Am. J. Ind. Med. 2008, 51, 782–794. [Google Scholar] [CrossRef]
- Keifer, M.C. Effectiveness of interventions in reducing pesticide overexposure and poisonings. Am. J. Prev. Med. 2000, 18 Suppl 4, 80–89. [Google Scholar] [CrossRef]
- Boeniger, M.F.; Lushniak, B.D. Exposure and absorption of hazardous materials through the skin. Int. J. Occup. Env. Heal. 2000, 6, 148–150. [Google Scholar]
- Fenske, R.A.; Birnbaum, S.G.; Methner, M.M.; Lu, C.; Nigg, H.N. Fluorescent tracer evaluation of chemical protective clothing during pesticide applications in Central Florida citrus groves. J. Agr. Saf. Health 2002, 8, 319–331. [Google Scholar]
- Bradman, A.; Salvatore, A.L.; Boeniger, M.; Castorina, R.; Snyder, J.; Barr, D.B.; Jewell, N.P.; Kavanagh-Baird, G.; Striley, C.; Eskenazi, B. Community-based intervention to reduce pesticide exposure to farmworkers and potential take-home exposure to their families. J. Expo. Sci. Env. Epid. 2009, 19, 79–89. [Google Scholar] [CrossRef]
- Quandt, S.A.; Hernandez-Valero, M.A.; Grzywacz, J.G.; Hovey, J.D.; Gonzales, M.; Arcury, T.A. Workplace, household, and personal predictors of pesticide exposure for farmworkers. Environ. Health Perspect. 2006, 114, 943–952. [Google Scholar] [CrossRef]
- Grieshop, J.I.; Villanueva, N.E.; Stiles, M.C. Wash day blues: Secondhand exposure to agricultural chemicals. J. Rural Health 1994, 10, 247–257. [Google Scholar] [CrossRef]
- Belsley, D.A. Conditioning Diagnositcs: Collinearity and Weak Data in Regression; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Schaefer, R.L. Bias correction in maximum likelihood logistic regression. Stat. Med. 1983, 2, 71–78. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Logistic Regression: A Self-Learning Text; Springer: New York, NY, 2002. [Google Scholar]
- Zyoud, S.H.; Sawalha, A.F.; Sweileh, W.M.; Awang, R.; Al-Khalil, S.I.; Al-Jabi, S.W.; Bsharat, N.M. Knowledge and practices of pesticide use among farm workers in the West Bank, Palestine: Safety implications. Environ. Health Prev. Med. 2010, 15, 252–261. [Google Scholar] [CrossRef]
- Plianbangchang, P.; Jetiyanon, K.; Wittaya-Areekul, S. Pesticide use patterns among small-scale farmers: A case study from Phitsanulok, Thailand. S. E. Asian J. Trop. Med. 2009, 40, 401–410. [Google Scholar]
- McPhee, S.J.; Nguyen, T.T.; Shema, S.J.; Nguyen, B.; Somkin, C.; Vo, P.; Pasick, R. Validation of recall of breast and cervical cancer screening by women in an ethnically diverse population. Prev. Med. 2002, 35, 463–473. [Google Scholar] [CrossRef]
- Talawat, S.; Dore, G.J.; Le Coeur, S.; Lallemant, M. Infant feeding practices and attitudes among women with HIV infection in Northern Thailand. AIDS Care 2002, 14, 625–631. [Google Scholar] [CrossRef]
- Lowndes, C.M.; Jayachandran, A.A.; Banandur, P.; Ramesh, B.M.; Washington, R.; Sangameshwar, B.M.; Moses, S.; Blanchard, J.; Alary, M. Polling booth surveys: A novel approach for reducing social desirability bias in HIV-related behavioural surveys in resource-poor settings. AIDS Behav. 2011, 16, 1054–1062. [Google Scholar]
- Blankson, M.L.; Cliver, S.P.; Goldenberg, R.L.; Hickey, C.A.; Jin, J.; Dubard, M.B. Health behavior and outcomes in sequential pregnancies of Black and White adolescents. J. Am. Med. Assoc. 1993, 269, 1401–1403. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Siega-Riz, A.M. A diet quality index for pregnancy detects variation in diet and differences by sociodemographic factors. Public Health Nutr. 2002, 5, 801–809. [Google Scholar]
- Panuwet, P.; Siriwong, W.; Prapamontol, T.; Ryan, P.B.; Fiedler, N.; Robson, M.G.; Barr, D.B. Agricultural pesticide management in Thailand: Status and population health risk. Environ. Sci. Policy 2012, 17, 72–81. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lorenz, A.N.; Prapamontol, T.; Narksen, W.; Srinual, N.; Barr, D.B.; Riederer, A.M. Pilot Study of Pesticide Knowledge, Attitudes, and Practices among Pregnant Women in Northern Thailand. Int. J. Environ. Res. Public Health 2012, 9, 3365-3383. https://doi.org/10.3390/ijerph9093365
Lorenz AN, Prapamontol T, Narksen W, Srinual N, Barr DB, Riederer AM. Pilot Study of Pesticide Knowledge, Attitudes, and Practices among Pregnant Women in Northern Thailand. International Journal of Environmental Research and Public Health. 2012; 9(9):3365-3383. https://doi.org/10.3390/ijerph9093365
Chicago/Turabian StyleLorenz, Alyson N., Tippawan Prapamontol, Warangkana Narksen, Niphan Srinual, Dana B. Barr, and Anne M. Riederer. 2012. "Pilot Study of Pesticide Knowledge, Attitudes, and Practices among Pregnant Women in Northern Thailand" International Journal of Environmental Research and Public Health 9, no. 9: 3365-3383. https://doi.org/10.3390/ijerph9093365
APA StyleLorenz, A. N., Prapamontol, T., Narksen, W., Srinual, N., Barr, D. B., & Riederer, A. M. (2012). Pilot Study of Pesticide Knowledge, Attitudes, and Practices among Pregnant Women in Northern Thailand. International Journal of Environmental Research and Public Health, 9(9), 3365-3383. https://doi.org/10.3390/ijerph9093365