A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines
Abstract
:1. Introduction
2. Methodology
2.1. High Order Numerical Solver
2.2. A Reduced Order Model for Data Prediction
2.2.1. The Algorithm of HODMD
- Dimension reduction via SVD. At this step, the spatial dimension J of the data collected is reduced to N linearly independent vectors using a singular value decomposition (SVD) [28]. By doing so, it is possible to clean the noise from the signal and to remove spatial redundancies. SVD is applied to the snapshots matrix (2):Then, the reduced snapshots matrix of dimension can be written asThe standard SVD-error, which determines the number of N SVD modes retained, is estimated for a certain tolerance (set by the user) as
- The DMD-d approximation. The reduced snapshot matrix is used to construct the following matrix according to the higher order Koopman assumption
2.2.2. Criterion Selection Method
3. Numerical Results
3.1. Numerical Simulations for a One Bladed Vertical Axis Turbines
3.2. Reduced Order Model for a One Bladed Vertical Axis Turbine
3.3. Extensions for Three Bladed Vertical Axis Turbine
4. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
ROM | Reduced Order Model |
DMD | Dynamic Mode Decomposition |
HODMD | High Order Dynamic Mode Decomposition |
DG | Discontinuous Galerkin |
LES | Large Eddy Simulation |
uRANS | unsteady Reynolds Averaged Navier–Stokes |
References
- Ferrer, E.; Willden, R.H.J. Blade-wake interactions in cross-flow turbines. Int. J. Mar. Energy 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Eriksson, S.; Bernhoff, H.; Leijon, M. Evaluation of different turbine concepts for wind power. Renew. Sustain. Energy Rev. 2008, 12, 1419–1434. [Google Scholar] [CrossRef]
- Islam, M.; Ting, D.S.K.; Fartaj, A. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev. 2008, 12, 1087–1109. [Google Scholar] [CrossRef]
- Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation I: Assessment of darrieus VAWT configurations. Renew. Energy 2015, 75, 50–67. [Google Scholar] [CrossRef]
- Muller, G.; Jentsch, M.F.; Stoddart, E. Vertical axis resistance type wind turbines for use in buildings. Renew. Energy 2009, 34, 1407–1412. [Google Scholar]
- Newman, B.G. Actuator-disc theory for vertical-axis wind turbines. J. Wind Eng. Ind. Aerodyn. 1983, 15, 347–355. [Google Scholar] [CrossRef]
- Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction; Scientific Computation; Springer: Berlin, Germany, 2001. [Google Scholar]
- Rowley, C.W.; Dawson, S.T.M. Model Reduction for Flow Analysis and Control. Annu. Rev. Fluid Mech. 2017, 49, 387–417. [Google Scholar] [CrossRef]
- Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G.V. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160108. [Google Scholar] [CrossRef] [PubMed]
- Iungo, G.V.; Santoni-Ortiz, C.; Abkar, M.; Porte-Agel, F.; Rotea, M.A.; Leonardi, S. Data-driven Reduced Order Model for prediction of wind turbine wakes. J. Phys. Conf. Ser. 2015, 625, 012009. [Google Scholar] [CrossRef]
- Le Clainche, S.; Vega, J.M. Higher Order Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 2017, 16, 882–925. [Google Scholar] [CrossRef]
- Kou, J.; Le Clainche, S.; Zhang, W. A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion. Phys. Fluids 2018, 30, 016103. [Google Scholar]
- Le Clainche, S.; Vega, J.M. Higher order dynamic mode decomposition to identify and extrapolate flow patterns. Phys. Fluids 2017, 29, 084102. [Google Scholar] [CrossRef]
- Wang, Z.J.; Fidkowski, R.; Abgrall, K.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H.T.; et al. High-order CFD methods: Current status and perspective. Int. J. Numer. Methods Fluids 2013, 72, 811–845. [Google Scholar] [CrossRef]
- Ferrer, E.; Willden, R.H.J. A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations. Comput. Fluids 2011, 46, 224–230. [Google Scholar] [CrossRef]
- Ferrer, E.; Willden, R.H.J. A high order discontinuous Galerkin—Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes. J. Comput. Phys. 2012, 231, 7037–7056. [Google Scholar] [CrossRef]
- Ferrer, E. A high Order Discontinuous Galerkin—Fourier Incompressible 3D Navier-Stokes Solver with Rotating Sliding Meshes for Simulating Cross-Flow Turbines. Ph.D. Thesis, University of Oxford, Oxford, UK, 2012. [Google Scholar]
- Ferrer, E.; Moxey, D.; Willden, R.H.J.; Sherwin, S. Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: Continuous and discontinuous Galerkin formulations. Commun. Comput. Phys. 2014, 16, 817–840. [Google Scholar] [CrossRef]
- Ferrer, E. An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit Large Eddy Simulations. J. Comput. Phys. 2017, 348, 754–775. [Google Scholar] [CrossRef]
- Ferrer, E.; de Vicente, J.; Valero, E. Low cost 3d global instability analysis and flow sensitivity based on dynamic mode decomposition and high-order numerical tools. Int. J. Numer. Methods Fluids 2014, 76, 169–184. [Google Scholar] [CrossRef]
- González, L.; Ferrer, E.; Diaz-Ojeda, H.R. Onset of three dimensional flow instabilities in lid-driven circular cavities. Wind Eng. 2017, 29, 0641022. [Google Scholar] [CrossRef]
- Ferrer, E.; Le Clainche, S. Flow scales in cross-flow turbines. In CFD for Wind and Tidal Offshore Turbines; Springer International Publishing: Basel, Switzerland, 2015; pp. 1–11. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Le Clainche, S.; Vega, J.M.; Soria, J. Higher Order Dynamic Mode Decomposition for noisy experimental data: Flow structures on a Zero-Net-Mass-Flux jet. Exp. Therm. Fluid Sci. 2017, 88, 336–353. [Google Scholar] [CrossRef]
- Le Clainche, S.; Moreno-Ramos, R.; Taylor, P.; Vega, J.M. A new robust method to study flight flutter testing. J. Aircr. Submitted.
- Berkooz, G.; Holmes, P.; Lumley, J. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W. An improved criterion to select dominant modes of dynamic mode decomposition. Eur. J. Mech. B Fluids 2017, 62, 109–129. [Google Scholar] [CrossRef]
- Sirovich, L. Turbulence and the dynamic of coherent structures, parts I–III. Q. Appl. Math. 1987, 45, 561–571. [Google Scholar] [CrossRef]
- Le Clainche, S.; Sastre, F.; Vega, J.M.; Velázquez, A. Higher order dynamic mode decomposition applied to postproces a limited amount of PIV data. In Proceedings of the 47th AIAA Fluid Dynamics Conference, AIAA Aviation Forum (AIAA paper 2017-3304), Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Le Clainche, S.; Pérez, J.M.; Vega, J.M. Spatio-temporal flow structures in the three-dimensional wake of a circular cylinder. Fluid Dyn. Res. 2018. [Google Scholar] [CrossRef]
- Sayadi, T.; Schmid, P.J.; Richecoeur, F.; Durox, D. Parametrized datadriven decomposition for bifurcation analysis, with application to thermoacoustically unstable systems. Phys. Fluids 2015, 27, 037102. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J.; Kinzel, M.; Dabiri, J.O. Fluid-structure interaction modeling of vertical-axis wind turbines. J. Appl. Mech. 2014, 81, 081006. [Google Scholar] [CrossRef]
- Consul, C.A.; Willden, R.H.; McIntosh, S.C. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120299. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Wind Eng. 2010, 35, 412–422. [Google Scholar] [CrossRef]
- Hsu, M.C.; Akkerman, I.; Bazilevs, Y. High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput. Fluids 2011, 49, 93–100. [Google Scholar] [CrossRef]
- McLaren, K.; Tullis, S.; Ziada, S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy 2011, 15, 349–361. [Google Scholar] [CrossRef]
- Qin, N.; Howell, R.; Durrani, N.; Hamada, K.; Smith, T. Unsteady flow simulation and dynamic stall behaviour of vertical axis wind turbine blades. Wind Eng. 2011, 35, 511–527. [Google Scholar] [CrossRef]
- Fluent Manual—ANSYS Academic Research, Release 16.2; ANSYS, Inc.: Canonsburg, PA, USA, 2015.
- Oler, J.W.; Strickland, J.H.; Im, B.J.; Graham, G.H. Dynamic Stall Regulation of Thedarrieus Turbine; Technical Report, SANDIA REPORT SAND83-7029 UC-261; Sandia National Laboratories: Albuquerque, NM, USA, 1983. [Google Scholar]
- Bremseth, J.; Duraisamy, K. Computational analysis of vertical axis wind turbine arrays. Theor. Comput. Fluid Dyn. 2016, 30, 387–401. [Google Scholar] [CrossRef]
- Chen, Y.; Lian, Y. Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine. Eng. Appl. Comput. Fluid Mech. 2015, 1, 21–32. [Google Scholar] [CrossRef]
- Deglaire, P.; Engblom, S.; Ågren, O.; Bernhoff, H. Analytical solutions for a single blade in vertical axis turbine motion in two-dimensions. Eur. J. Mech. B Fluids 2009, 28, 506–520. [Google Scholar] [CrossRef]
- Osterberg, D. Multi-Body Unsteady Aerodynamics in 2D Applied to a Vertical-Axis Wind Turbine Using a Vortex Method; Technical Report; Uppsala University: Uppsala, Sweden, 2010. [Google Scholar]
High Order Solver | Low Order Fluent | |
---|---|---|
Blade/Mesh movement | Sliding mesh | Sliding mesh |
Numerical scheme | 3D DG-Fourier | 2D Finite Volume |
Out-of-plane length | 0.5 m * | 0 m |
Turbulence model | Large Eddy Simulation | k-omega SST (uRANS) |
Numerical details | polynomial order P = 3 | Second order Upwind |
Order of accuracy | 3 | 2 |
Mesh size | 1.1 millions ** | 7896 *** |
Time advancement | 2nd order semi-implicit | 1st order implicit |
Time step | 0.001 s | 0.2 s |
Blade | Turb. | Length | Stream | Rot. | Tip Speed | Kin. | Reynolds | ||
---|---|---|---|---|---|---|---|---|---|
Chord | Diameter | Ratio | Vel. | Speed | Ratio | Visc | |||
Symbol | c | D | U | ||||||
Units | m | m | - | m/s | rad/s | - | m2/s | - | - |
Oler et al. [39] | 0.1524 | 1.22 | 0.125 | 0.091 | 0.749 | 5 | |||
Simulations | 1.0 | 8.0 | 0.125 | 0.088 | 0.11 | 5 |
m | M | |||
---|---|---|---|---|
1 | −9.5158 × | 1.0418 × | 8.3676 × | 3 |
2 | −1.3190 × | 2.0196 × | 4.3080 × | 5 |
3 | −5.5556 × | 4.2243 × | 4.5354 × | 7 |
4 | 8.5601 × | 1.0403 × 10 | 1.1669 × 10 | 9 |
5 | 9.8704 × | 8.6673 | 2.1948 × 10 | 11 |
6 | 8.7053 × | 1.0250 × 10 | 9.6744 | 13 |
7 | −2.8024 × | 3.0565 × | 9.0310 × | 15 |
8 | 4.7800 × | 4.5260 | 6.1397 × | 17 |
9 | −1.9750 × | 5.2824 × | 1.2018 × | 19 |
10 | 8.5236 × | 8.8956 | 6.9477 | 21 |
m | M | |||
---|---|---|---|---|
1 | −2.4974 × | 1.0372 × | 1.4785 × | 3 |
2 | −5.6401 × | 2.1195 × | 9.5278 × | 5 |
3 | −2.6524 × | 3.3103 × | 2.9438 × | 7 |
4 | −2.9580 × | 4.3577 × | 2.2503 × | 9 |
5 | −3.2188 × | 5.4754 × | 1.8342 × | 11 |
6 | −2.8720 × | 6.5329 × | 1.7896 × | 13 |
7 | −2.7517 × | 7.8174 × | 1.3842 × | 15 |
8 | −2.8857 × | 1.0277 | 1.2363 × | 17 |
9 | −4.0700 × | 1.1119 | 1.1227 × | 19 |
10 | −4.2714 × | 1.2517 | 8.6121 × | 21 |
m | M | |||
---|---|---|---|---|
1 | −3.0199 × | 1.3516 × | 8.5508 × | 3 |
2 | −4.0940 × | 2.6042 × | 4.9633 × | 5 |
3 | −3.0227 × | 4.2156 × | 4.3403 × | 7 |
4 | −4.0559 × | 5.9441 × | 3.7762 × | 9 |
5 | −5.0647 × | 8.5848 × | 3.0700 × | 11 |
6 | −9.1483 × | 1.4785 | 2.2538 × | 13 |
7 | −3.8967 × | 1.1690 | 3.1258 × | 15 |
8 | −1.0826 × | 1.5864 | 1.8197 × | 17 |
9 | −6.2864 × | 1.3355 | 2.3832 × | 19 |
10 | −7.8737 × | 7.2259 × | 2.0244 × | 21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Clainche, S.; Ferrer, E. A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines. Energies 2018, 11, 566. https://doi.org/10.3390/en11030566
Le Clainche S, Ferrer E. A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines. Energies. 2018; 11(3):566. https://doi.org/10.3390/en11030566
Chicago/Turabian StyleLe Clainche, Soledad, and Esteban Ferrer. 2018. "A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines" Energies 11, no. 3: 566. https://doi.org/10.3390/en11030566
APA StyleLe Clainche, S., & Ferrer, E. (2018). A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines. Energies, 11(3), 566. https://doi.org/10.3390/en11030566