Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market
Abstract
:1. Introduction
2. Political–Economic Forces and Exports
3. Model Specification and Methodology
4. Empirical Test
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
Independent Variables | Dependent Variable | ||||
(1) FE (AR1) | (2) GMM-Dif | (3) GMM-Sys | LSDVC | ||
(4) Initial (AH) | (5) Initial (BB) | ||||
0.525 (0.179) *** | 0.765 (0.037) *** | 0.772 (0.046) *** | 0.875 (0.033) *** | ||
−0.014 (0.023) | −0.031 (0.025) | 0.029 (0.022) | −0.034(0.018) ** | −0.030 (0.016) * | |
0.148 (0.069) ** | 0.283 (0.120) ** | 0.046 (0.049) | 0.097 (0.047) ** | 0.088 (0.039) ** | |
0.345 (0.271) * | 0.408 (0.217) * | 0.078 (0.086) | 0.355 (0.188) ** | 0.249 (0.171) | |
−0.007 (0.017) | −0.026 (0.022) | −0.001 (0.017) | −0.003 (0.015) | 0.008 (0.000) | |
0.171 (0.111) | 0.070 (0.016) *** | 0.013 (0.002) *** | 0.050 (0.112) | 0.125 (0.117) | |
0.037 (0.021) * | 0.027 (0.013) ** | 0.010 (0.017) | −0.008 (0.011) | −0.000 (0.008) | |
−0.047 (0.056) | −0.094 (0.038) | 0.033 (0.032) | −0.054 (0.035) | −0.041 (0.034) | |
0.380 (0.119) *** | 0.395 (0.154) *** | 0.213 (0.076) *** | 0.185 (0.077) *** | 0.052 (0.065) * | |
0.003 (0.004) | 0.008 (0.004) * | 0.005 (0.006) | 0.005 (0.006) | 0.002 (0.006) | |
Instruments | GMM-Dif | ||||
) | 15,105 *** | 8923 *** | |||
33.550 *** | |||||
) | 229.14 | 240.980 | |||
−3.140 *** | −3.479 *** | ||||
0.740 | 0.560 |
References
- REN21. Renewables Global Status Report: 2010; REN21 Secretariat: Paris, France, 2010. [Google Scholar]
- Costantini, V.; Crespi, F. Environmental regulation and the export dynamics of energy technologies. Ecol. Econ. 2008, 66, 447–460. [Google Scholar] [CrossRef]
- Jha, V. Trade Flows, Barriers and Market Drivers in Renewable Energy Supply Goods: The Need to Level the Playing Field; ICTSD Trade and Environment Issue Paper 10; International Centre for Trade and Sustainable Development: Geneva, Switzerland, 2009. [Google Scholar]
- Cao, J.; Groba, F. Chinese Renewable Energy Technology Exports: The Role of Policy Innovation and Markets; Discussion Paper No. 1263; German Institute for Economic Research: Berlin, Germany, 2013. [Google Scholar]
- Sung, B.; Song, W.-Y. Causality between public policies and exports of renewable energy technologies. Energy Policy 2013, 55, 95–104. [Google Scholar] [CrossRef]
- Krugman, P. The narrow moving band, the Dutch disease, and the competitive consequences of Mrs. Thatcher: Notes on trade in the presence of dynamic scale economies. J. Dev. Econ. 1987, 17, 15–32. [Google Scholar] [CrossRef]
- Bijker, W.E.; Hughes, T.P.; Pinch, T. The Social Construction of Technological Systems. New Directions in the Sociology and History of Technology; The MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Davidson, K. A typology to categorize the ideologies for actors in the sustainable development debate. Sustain. Dev. 2014, 22, 1–14. [Google Scholar] [CrossRef]
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef]
- McKay, H. Environmental, economic, social and political drivers for increasing use of woodfuel as a renewable resource in Britain. Biomass Bioenergy 2006, 30, 308–315. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A. Drivers promoting renewable energy: A dynamic panel approach. Renew. Sustain. Energy Rev. 2011, 15, 1601–1608. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Chou, C.J.; Lin, G.T.R. The portfolio of renewable energy sources for achieving the three E policy goals. Energy 2011, 336, 2589–2598. [Google Scholar] [CrossRef]
- Collinson, P. Livelihoods and Conflict: Case Studies in Political Economy Analysis for Humanitarian Action; ODI: London, UK, 2003. [Google Scholar]
- Oliver, C. The influence of institutional and task environment relationships on organizational performance: The Canadian construction industry. J. Manag. Stud. 1997, 34, 99–124. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The iron cage revisited: Institutional isomorphism and collective rationality in organizational field. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef]
- Jagoda, K.; Lonseth, R.; Lonseth, A.; Jackman, T. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective. Renew. Energy 2011, 36, 1266–1271. [Google Scholar] [CrossRef]
- Lund, P.D. Effects of energy policies on industry expansion in renewable energy. Renew. Energy 2009, 34, 53–64. [Google Scholar] [CrossRef]
- Nemet, G.F. Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Res. Policy 2009, 38, 700–709. [Google Scholar] [CrossRef]
- Johnstone, N.; Haščič, L.; Popp, D. Renewable energy policies and technological innovation: Evidence based on patent counts. Environ. Resour. Econ. 2010, 45, 133–155. [Google Scholar] [CrossRef]
- Klaassen, G.; Miketa, A.; Larsen, K.; Sundqvist, T. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecol. Econ. 2005, 54, 227–240. [Google Scholar]
- Laird, F.N.; Stefes, C. The diverging paths of German and United States policies for renewable energy: Sources of difference. Energy Policy 2009, 337, 2619–2629. [Google Scholar] [CrossRef]
- Khalil, A.; Mubarak, A.; Kaseb, S. Road map for renewable energy research and development in Egypt. J. Adv. Res. 2010, 1, 29–38. [Google Scholar] [CrossRef]
- Couture, T.; Gagnon, Y. An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy 2010, 38, 955–965. [Google Scholar] [CrossRef]
- Krajačić, G.; Duić, N.; Tsikalakis, A.; Zoulias, M.; Caralis, G.; Panteri, E.; da Graça Carvalho, E. Feed-in tariffs for promotion of energy storage technologies. Energy Policy 2011, 39, 1410–1425. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). Deploying Renewables: Principles for Effective Policies; OECD: Paris, France, 2008. [Google Scholar]
- Geng, Y.; Haight, M.; Zhu, Q. Empirical analysis of eco-industry development in China. Sustain. Dev. 2007, 15, 121–133. [Google Scholar] [CrossRef]
- Covaleski, M.A.; Dirsmith, M.W. An institutional perspective on the rise social transformation, and fall of a university budget category. Admin. Sci. Q. 1988, 33, 562–587. [Google Scholar] [CrossRef]
- Costantini, V.; Mazzanti, M. On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports. Res. Policy 2012, 41, 132–153. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Sovacool, B. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States. Energy Policy 2009, 37, 4500–4513. [Google Scholar] [CrossRef]
- Al-mulali, U.; Freidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Examining the bi-directional long run relationship between renewable energy consumption and GDP growth. Renew. Sustain. Energy Rev. 2013, 22, 209–222. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Martini, C.; Pennacchio, L. Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector. Res. Policy 2015, 44, 577–595. [Google Scholar] [CrossRef]
- Arent, D.J.; Wise, A.; Gelman, R. The status and prospects of renewable energy for combating global warming. Energy Econ. 2011, 33, 584–593. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. A test for normality of observation and regression residual. Int. Stat. Rev. 1987, 55, 163–172. [Google Scholar] [CrossRef]
- Brown, R.L.; Durbin, J.; Evans, J.M. Technologies for testing the constancy of regression relationships over time. J. R. Stat. Soc. B 1975, 37, 149–192. [Google Scholar]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Linear Regression Models; Irwin: New York, NY, USA, 1989. [Google Scholar]
- Kennedy, P. A Guide to Econometrics; Blackwell: Oxford, UK, 1992. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Frees, E.W. Assessing cross-sectional correlation in panel data. J. Econom. 1995, 69, 393–414. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; Cambridge Working Papers in Economics No. 0435; University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef]
- Roodman, D. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef]
- Sarafidis, V.; Yamagata, T.; Robertson, D. A test for cross section dependence for a linear dynamic panel model with regressors. J. Econom. 2009, 148, 149–161. [Google Scholar] [CrossRef]
- D’Amato, A.; Mazzanti, M.; Nicolli, F. Waste and organized crime in regional environments: How waste tariffs and the mafia affect waste management and disposal. Resour. Energy Econ. 2015, 41, 185–201. [Google Scholar] [CrossRef]
- Anderson, T.W.; Hsiao, C. Formulation and estimation of dynamic models using panel data. J. Econom. 1982, 18, 570–606. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components model. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Judson, R.H.; Owen, A.L. Estimating dynamic panel data models: A guide for macroeconomists. Econ. Lett. 1999, 65, 9–15. [Google Scholar] [CrossRef]
- Bruno, G. Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. Econ. Lett. 2005, 87, 361–366. [Google Scholar] [CrossRef]
- Nickell, S. Biases in dynamic models with fixed effects. Econometrica 1981, 49, 1417–1426. [Google Scholar] [CrossRef]
- Baltagi, H.B. Econometric Analysis of Panel Data; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Popp, D.; Hafner, T.; Johnstone, N. Environmental policy vs. public pressure: Innovation and diffusion of alternative bleaching technologies in the pulp industry. Res. Policy 2011, 40, 1253–1268. [Google Scholar] [CrossRef]
- Toke, D. Ecological Modernization and Renewable Energy; Palgrave Macmillan: London, UK, 2011. [Google Scholar]
- Walker, G.; Cass, N.; Burningham, K.; Barnett, J. Renewable energy and sociotechnical change: Imagined subjectivities of ‘the public’ and ‘their implication’. Environ. Plan. 2010, 42, 931–947. [Google Scholar] [CrossRef] [Green Version]
- Söderholm, D.; Klaassen, G. Wind power in Europe: A simultaneous innovation-diffusion model. Environ. Resour. Econ. 2007, 36, 163–190. [Google Scholar] [CrossRef]
- Leitner, K.H. Innovations Management. Lecture Notes; Vienna University of Technology: Vienna, Austria, 2005. [Google Scholar]
- Kahouli-Brahmi, S. Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach. Ecol. Econ. 2009, 68, 1195–1212. [Google Scholar] [CrossRef]
- Corsatea, T.D.; Giaccaria, S.; Arántegui, R.L. The role of sources of finance on the development of wind technology. Renew. Energy 2014, 66, 140–149. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, H.; Zou, D. Exuberance in China’s renewable energy investment: Rationality, capital structure and implications with firm level evidence. Energy Policy 2016, 95, 468–478. [Google Scholar] [CrossRef]
- Lin, B.; Yang, L. Efficiency effect of changing investment structure on China’s power industry. Renew. Sustain. Energy Rev. 2014, 39, 403–411. [Google Scholar] [CrossRef]
- Stiglitz, J.E.; Greenwald, B.C. Creating a Learning Society; Columbia University Press: New York, NY, USA, 2014. [Google Scholar]
- Damijan, J.; Kostevc, Č.; Rojec, M. Exporting Status and Success in Innovation: Evidence from Community Innovation Survey Micro Data for EU Countries; GRINCOH Working Paper, Paper No. 2.06; Institute for Economic Research: Ljubljana, Slovenia, 2014. [Google Scholar]
- Yokota, K.; Kurita, K.; Urata, S. In search of the learning-by-exporting effect: Role of economies of scale and technology. China Econ. Policy Rev. 2016, 5, 1650001. [Google Scholar] [CrossRef]
Relatives Dimensions | Political Forces | Economic Forces |
---|---|---|
Environmental context | Political and legal | Market |
Type of pressures | Coercive; mimetic; normative | Competitive |
Key elements | Government agencies; public; trade associations | Consumers; competitors |
Mechanisms of external control | Institution; regulations; guideline; platform; charter | Exchange dependencies |
Main factors related to RETs |
| Market size [2,17,28] |
Country | EX | RAD | CRES | CO2PC | EOS | ENS | ENGS | ECS | GDP | NTA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
AUS | 6.212 | 0.492 | 2.762 | 1.021 | 2.218 | 0.139 | 2.218 | 0.052 | 0.254 | 0.363 | 6.907 | 0.000 | 2.325 | 0.380 | 4.362 | 0.060 | 10.125 | 0.532 | 2.450 | 0.876 |
AUT | 7.961 | 0.622 | 2.516 | 0.693 | 4.255 | 0.052 | 2.076 | 0.067 | 1.072 | 0.427 | 6.907 | 0.000 | 2.792 | 0.140 | 2.399 | 0.231 | 10.331 | 0.350 | 2.453 | 1.146 |
BEL | 8.020 | 1.559 | 3.025 | 1.658 | 3.114 | 0.982 | 2.140 | 0.428 | 0.498 | 2.150 | 1.062 | 3.022 | 2.024 | 1.960 | 2.217 | 2.597 | 10.154 | 0.436 | 2.045 | 3.231 |
CAN | 8.221 | 0.602 | 3.382 | 0.904 | 4.125 | 0.022 | 2.775 | 0.065 | 0.774 | 0.348 | 2.698 | 0.124 | 1.625 | 0.477 | 2.776 | 0.170 | 10.189 | 0.436 | 2.258 | 1.350 |
DEN | 7.903 | 0.727 | 3.120 | 0.671 | 2.678 | 0.839 | 2.282 | 0.171 | 1.618 | 0.733 | 6.907 | 0.000 | 2.641 | 0.694 | 4.018 | 0.280 | 10.521 | 0.376 | 2.868 | 2.571 |
FIN | 7.479 | 0.574 | 7.479 | 1.010 | 3.441 | 0.135 | 2.396 | 0.099 | 0.097 | 0.566 | 3.416 | 0.072 | 2.524 | 0.211 | 3.167 | 0.205 | 10.301 | 0.394 | 2.868 | 2.571 |
FRA | 9.202 | 0.344 | 3.189 | 1.350 | 2.624 | 0.124 | 1.773 | 0.067 | 0.268 | 0.350 | 4.347 | 0.022 | 0.693 | 0.757 | 1.661 | 0.241 | 10.238 | 0.317 | 3.327 | 1.326 |
GER | 10.152 | 0.629 | 4.723 | 0.345 | 2.199 | 0.541 | 2.308 | 0.069 | 0.371 | 0.335 | 3.265 | 0.175 | 2.309 | 0.257 | 3.933 | 0.092 | 10.307 | 0.281 | 5.069 | 1.161 |
ITA | 9.145 | 0.510 | 3.977 | 0.338 | 3.055 | 0.174 | 2.017 | 0.073 | 3.149 | 0.753 | 6.907 | 0.000 | 3.508 | 0.436 | 2.594 | 0.211 | 10.096 | 0.349 | 2.765 | 1.507 |
JPN | 10.269 | 0.454 | 5.057 | 0.346 | 2.382 | 0.093 | 2.240 | 0.035 | 2.871 | 0.335 | 3.112 | 0.650 | 3.172 | 0.180 | 3.078 | 0.251 | 10.557 | 0.124 | 4.780 | 0.930 |
NED | 8.573 | 0.706 | 3.906 | 0.491 | 1.690 | 0.653 | 2.362 | 0.027 | 0.910 | 0.440 | 1.412 | 0.148 | 4.050 | 0.042 | 3.367 | 0.146 | 10.356 | 0.402 | 3.141 | 1.125 |
NZD | 5.086 | 0.543 | 0.822 | 0.929 | 4.277 | 0.071 | 2.061 | 0.069 | 4.255 | 2.087 | -6.907 | 0.000 | 3.068 | 0.191 | 1.615 | 0.631 | 9.824 | 0.481 | 3.252 | 4.173 |
NOR | 6.716 | 0.688 | 1.944 | 1.103 | 4.599 | 0.011 | 2.200 | 0.141 | 4.812 | 1.280 | 6.907 | 0.000 | 1.632 | 2.161 | 2.641 | 0.209 | 10.737 | 0.534 | 1.911 | 1.272 |
POR | 6.265 | 0.596 | 0.119 | 0.627 | 3.524 | 0.286 | 1.672 | 0.124 | 2.772 | 0.658 | 6.907 | 0.000 | 0.140 | 4.530 | 3.413 | 0.252 | 9.510 | 0.437 | 1.931 | 3.898 |
ESP | 7.751 | 0.797 | 3.560 | 0.654 | 3.000 | 0.260 | 1.892 | 0.130 | 2.042 | 0.257 | 3.247 | 0.242 | 2.251 | 1.277 | 3.303 | 0.421 | 9.810 | 0.448 | 1.716 | 3.230 |
SUI | 8.125 | 0.485 | 3.122 | 0.662 | 3.936 | 0.109 | 1.746 | 0.081 | 0.329 | 0.664 | 3.809 | 0.100 | 0.755 | 0.498 | 0.558 | 0.334 | 10.455 | 0.340 | 3.144 | 0.856 |
SWI | 8.237 | 0.414 | 3.370 | 0.307 | 4.080 | 0.035 | 1.170 | 0.078 | 1.069 | 0.758 | 3.703 | 0.051 | 0.196 | 0.209 | 6.594 | 0.804 | 10.798 | 0.308 | 3.144 | 0.856 |
TUR | 6.136 | 1.385 | 0.183 | 1.080 | 3.407 | 0.287 | 1.219 | 0.154 | 1.427 | 0.853 | 6.907 | 0.000 | 3.461 | 0.436 | 3.387 | 0.133 | 8.099 | 0.941 | 2.948 | 4.095 |
UK | 8.726 | 0.504 | 3.371 | 1.066 | 1.325 | 0.579 | 2.175 | 0.089 | 0.791 | 0.754 | 3.087 | 0.200 | 3.254 | 0.830 | 3.630 | 0.236 | 10.240 | 0.393 | 3.316 | 1.209 |
USA | 10.221 | 0.426 | 5.770 | 0.647 | 2.350 | 0.130 | 2.943 | 0.057 | 0.863 | 0.505 | 2.968 | 0.029 | 2.844 | 0.237 | 3.911 | 0.081 | 10.429 | 0.335 | 4.967 | 1.281 |
Variables | Pesaran CADF Test z (t-Bar) Stat. | Variables | Pesaran CADF Test z (t-Bar) Stat. | ||||||
---|---|---|---|---|---|---|---|---|---|
Without Trend | With Trend | Without Trend | With Trend | ||||||
EX | −3.199 *** | [1] | −1.284 | [2] | EN | 9.943 | [2] | 9.185 | [2] |
−7.251 *** | [1] | −5.936 *** | [1] | −2.375 *** | [1] | −2.553 *** | [1] | ||
RAD | 0.775 | [2] | 1.873 | [2] | ENG | 2.961 | [2] | 0.702 | [2] |
−9.102 *** | [1] | −7.037 *** | [1] | −6.925 *** | [2] | −5.182 *** | [1] | ||
CRES | 1.630 | [2] | −0.755 ** | [2] | EC | 3.040 | [2] | 2.623 | [3] |
−4.409 *** | [2] | −5.102 *** | [1] | −3.467 *** | [2] | −2.426 *** | [2] | ||
CO2PC | 1.054 | [2] | −0.688 | [2] | DMS | 2.469 | [2] | 0.991 | [2] |
−4.499 *** | [2] | −5.750 *** | [1] | −4.226 *** | [1] | −2.689 *** | [1] | ||
EO | 2.381 | [2] | 4.402 | [2] | NTC | −3.540 *** | [2] | −0.614 | [2] |
−7.385 *** | [2] | −7.370 *** | [1] | −4.011 *** | [2] | −8.551 *** | [1] |
Panel A: Bias-Corrected LSDV Estimation (with Time Dummies) | ||||||||||
Independent variables | Dependent Variables | |||||||||
0.758 *** | −0.122 | −0.015 | 0.003 | −0.262 ** | 0.008 | −0.193 ** | 0.001 | 0.010 | 0.165 | |
−0.034 ** | 0.764 *** | −0.020 | −0.001 | −0.251 | −0.043 | 0.042 | −0.013 | 0.008 | −0.099 | |
0.088 ** | 0.100 | 0.986 *** | −0.018 | 0.031 | −0.161 | 0.143 * | −0.041 | −0.006 | −0.187 | |
0.327 ** | 0.286 | 0.291 ** | 0.935 *** | 0.693 ** | −0.464 | 0.873 ** | −0.081 | −0.001 | −3.241 ** | |
−0.003 | 0.259 | 0.003 | 0.004 | 0.753 *** | 0.018 | −0.069 ** | −0.020 | 0.012 ** | 0.128 | |
0.074 | 0.070 | −0.010 | −0.019 | −0.263 | 0.825 *** | 0.062 | 0.061 | −0.011 | −1.702 | |
−0.008 | −0.027 | −0.006 | −0.005 | 0.172 | 0.009 | 0.910 *** | −0.013 | −0.003 | −0.016 | |
−0.047 | −0.028 | −0.006 | −0.002 | −0.054 | 0.134 | 0.011 | 0.753*** | −0.006 | 0.689 ** | |
0.161 ** | 0.246 | −0.057 | 0.001 | 0.040 | 0.210 | 0.050 | −0.033 | 1.032 *** | 3.210 *** | |
0.005 | 0.012 | −0.001 | 0.001 | 0.235 | −0.009 | 0.013 | −0.004 | 0.003 | 0.712 *** | |
Panel B: Panel Causality Tests | ||||||||||
Independent Variables | Dependent Variables | |||||||||
- | 1.180 | 0.230 | 0.008 | 4.930 ** | 0.001 | 5.220 ** | 0.001 | 0.500 | 0.210 | |
4.050 ** | - | 1.940 | 0.101 | 0.220 | 0.740 | 1.220 | 0.490 | 1.620 | 0.390 | |
5.250 ** | 1.170 | - | 2.320 | 0.070 | 2.310 | 2.820 ** | 0.900 | 0.180 | 0.280 | |
3.670 ** | 0.470 | 4.430 ** | - | 2.590 ** | 0.870 | 5.370 ** | 0.190 | 0.001 | 4.110 ** | |
0.060 | 0.590 | 0.070 | 0.910 | - | 0.200 | 4.830 ** | 1.630 | 5.140 ** | 0.980 | |
0.610 | 0.090 | 0.002 | 0.490 | 0.790 | - | 0.090 | 0.340 | 0.080 | 3.840 ** | |
0.830 | 1.710 | 0.760 | 3.650 * | 0.380 | 0.130 | - | 1.700 | 1.030 | 0.040 | |
0.800 | 0.100 | 0.060 | 0.060 | 0.270 | 1.850 | 0.020 | - | 0.230 | 4.860 ** | |
5.600 *** | 2.350 | 1.000 | 0.001 | 0.040 | 1.180 | 0.011 | 0.200 | - | 26.130 *** | |
1.880 | 0.940 | 0.003 | 0.280 | 1.830 | 0.320 | 1.050 | 0.380 | 1.670 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, B.; Wen, C. Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market. Energies 2018, 11, 874. https://doi.org/10.3390/en11040874
Sung B, Wen C. Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market. Energies. 2018; 11(4):874. https://doi.org/10.3390/en11040874
Chicago/Turabian StyleSung, Bongsuk, and Cui Wen. 2018. "Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market" Energies 11, no. 4: 874. https://doi.org/10.3390/en11040874
APA StyleSung, B., & Wen, C. (2018). Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market. Energies, 11(4), 874. https://doi.org/10.3390/en11040874