Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal
Abstract
:1. Introduction
2. Literature Review
3. Methods
Conceptual Framework
- It takes into account human behavior and its influence on energy efficiency
- It enables new procedures to become habits and behaviors.
- It contributes to preserving the environment
- The majority of analyzed papers deal with barriers, but not with ways of overcoming them
4. Results
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Trianni, A.; Cagno, E.; Farné, S. Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Appl. Energy 2016, 162, 1537–1551. [Google Scholar] [CrossRef]
- Thollander, P.; Paramonova, S.; Cornelis, E.; Kimura, O.; Trianni, A.; Karlsson, M.; Cagno, E.; Morales, I.; Navarro, J.P.J. International study on energy end-use data among industrial SMEs (small and medium-sized enterprises) and energy end-use efficiency improvement opportunities. J. Clean. Prod. 2015, 104, 282–296. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Kresling, J.; Webb, D.; Soutar, G.N.; Mazzarol, T. Energy saving behaviours: Development of a practice-based model. Energy Policy 2013, 61, 71–381. [Google Scholar] [CrossRef]
- Paramonova, S.; Thollander, P.; Ottosson, M. Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries. Renew. Sustain. Energy Rev. 2015, 51, 472–483. [Google Scholar] [CrossRef]
- Blomqvist, E.; Thollander, P. An integrated dataset of energy efficiency measures published as linked open data. Energy Effic. 2015, 8, 1125–1147. [Google Scholar] [CrossRef]
- Chiaroni, D.; Chiesa, V.; Franzò, S.; Frattini, F.; Latilla, V.M. Overcoming internal barriers to industrial energy efficiency through energy audit: A case study of a large manufacturing company in the home appliances industry. Clean Technol. Environ. Policy 2017, 19, 1031–1046. [Google Scholar] [CrossRef]
- Backman, F. Barriers to energy efficiency in Swedish non-energy-intensive micro-and small-sized enterprises—A case study of a local energy program. Energies 2017, 10, 100. [Google Scholar] [CrossRef]
- Chiu, T.-Y.; Lo, S.-L.; Tsai, Y.-Y. Establishing an integration-energy-practice model for improving energy performance indicators in ISO 50001 energy management systems. Energies 2012, 5, 5324–5339. [Google Scholar] [CrossRef]
- Hirst, E.; Brown, M. Closing the efficiency gap: Barriers to the efficient use of energy. Resour. Conserv. Recycl. 1990, 3, 267–281. [Google Scholar] [CrossRef]
- Sorrell, S.; Schleich, J.; Scott, S.; O’malley, E.; Trace, F.; Boede, U.; Ostertag, K.; Radgen, P. Reducing Barriers to Energy Efficiency in Public and Private Organizations; Science and Policy Technology Research (SPRU), University of Sussex: Sussex, UK, 2000. [Google Scholar]
- Cagno, E.; Trianni, A. Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. J. Clean. Prod. 2014, 82, 70–83. [Google Scholar] [CrossRef]
- Häckel, B.; Pfosser, S.; Tränkler, T. Explaining the energy efficiency gap-Expected Utility Theory versus Cumulative Prospect Theory. Energy Policy 2017, 111, 414–426. [Google Scholar] [CrossRef]
- Sorrell, S.; Mallett, A.; Nye, S. Barriers to Industrial Energy Efficiency: A literature Review; United Nations Industrial Development Organization (UNIDO): Vienna, Austria, 2011. [Google Scholar]
- Thollander, P.; Palm, J.; Rohdin, P. Categorizing barriers to energy efficiency—An interdisciplinary perspective. In Energy Efficiency; InTech: London, UK, 2010. [Google Scholar]
- Kee, D.; Jun, G.T.; Waterson, P.; Haslam, R. A systemic analysis of South Korea Sewol ferry accident—Striking a balance between learning and accountability. Appl. Ergon. 2017, 59, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espiñeira, R.; García-Valiñas, M.A.; Nauges, C. Households’ pro-environmental habits and investments in water and energy consumption: Determinants and relationships. J. Environ. Manag. 2014, 133, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 2015, 41, 1385–1394. [Google Scholar] [CrossRef]
- Fornara, F.; Pattitoni, P.; Mura, M.; Strazzera, E. Predicting intention to improve household energy efficiency: The role of value-belief-norm theory, normative and informational influence, and specific attitude. J. Environ. Psychol. 2016, 45, 1–10. [Google Scholar] [CrossRef]
- Lopes, M.; Antunes, C.; Martins, N. Energy behaviours as promoters of energy efficiency: A 21st century review. Renew. Sustain. Energy Rev. 2012, 16, 4095–4104. [Google Scholar] [CrossRef]
- Thollander, P.; Palm, J. Industrial energy management decision making for improved energy efficiency—Strategic system perspectives and situated action in combination. Energies 2015, 8, 5694–5703. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, Y.; Cao, Y.; Li, D.; Wang, L. Optimal Energy Management for Microgrids with Combined Heat and Power (CHP) Generation, Energy Storages, and Renewable Energy Sources. Energies 2017, 10, 1288. [Google Scholar] [CrossRef]
- Capizzi, G.; Sciuto, G.L.; Napoli, C.; Tramontana, E. Advanced and Adaptive Dispatch for Smart Grids by means of Predictive Models. IEEE Trans. Smart Grid 2017. [Google Scholar] [CrossRef]
- Kozhevnikov, M.; Gitelman, L.; Magaril, E.; Magaril, R.; Aristova, A. Risk Reduction Methods for Managing the Development of Regional Electric Power Industry. Sustainability 2017, 9, 2201. [Google Scholar] [CrossRef]
- Bonanno, F.; Capizzi, G.; Sciuto, G.L. A neuro wavelet-based approach for short-term load forecasting in integrated generation systems. In Proceedings of the 2013 International Conference on Clean Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013; pp. 772–776. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 33. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Fanning, A.L.; O’Neill, D.W. Tracking resource use relative to planetary boundaries in a steady-state framework: A case study of Canada and Spain. Ecol. Indicators 2016, 69, 836–849. [Google Scholar] [CrossRef]
- Lomborg, B. Global Warming’s Technology Deficit. Available online: https://www.project-syndicate.org/commentary/global-warming-s-technology-deficit?barrier=accessreg (accessed on 17 December 2017).
- Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. An overview of renewable electric power capacity and progress in new technologies in the world. Renew. Sustain. Energy Rev. 2015, 49, 323–334. [Google Scholar] [CrossRef]
- Willems, W.; Kramer, U.; Maas, H. Alternative fuels of today for sustainable mobility of tomorrow. In Internationaler Motorenkongress 2017; Springer: Wiesbaden, Germany, 2017; pp. 381–389. [Google Scholar]
- Van der Hoeven, M.; Houssin, D. Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Worrell, E. The next frontier to realize industrial energy efficiency. In Linköping Electronic Conference Proceedings; Linköping University Electronic Press: Linköping, Sweden, 2011; Volume 7, pp. 1–13. [Google Scholar]
- Introna, V.; Cesarotti, V.; Benedetti, M.; Biagiotti, S.; Rotunno, R. Energy Management Maturity Model: An organizational tool to foster the continuous reduction of energy consumption in companies. J. Clean. Prod. 2014, 83, 108–117. [Google Scholar] [CrossRef]
- Jovanović, B.; Filipović, J. ISO 50001 standard-based energy management maturity model–proposal and validation in industry. J. Clean. Prod. 2016, 112, 2744–2755. [Google Scholar] [CrossRef]
- Zobel, T.; Malmgren, C. Evaluating the management system approach for industrial energy efficiency improvements. Energies 2016, 9, 774. [Google Scholar] [CrossRef]
- Lee, D.; Cheng, C.-C. Energy savings by energy management systems: A review. Renew. Sustain. Energy Rev. 2016, 56, 760–777. [Google Scholar] [CrossRef]
- Saidur, R.; Ahamed, J.; Masjuki, H. Energy, exergy and economic analysis of industrial boilers. Energy Policy 2010, 38, 2188–2197. [Google Scholar] [CrossRef]
- Terehovics, E.; Veidenbergs, I.; Blumberga, D. Energy and exergy balance methodology. Wood chip dryer. Energy Procedia 2017, 128, 551–557. [Google Scholar] [CrossRef]
- Svensson, E.; Harvey, S. Pinch analysis of a partly integrated pulp and paper mill. In Proceedings of the WREC-World Renewable Energy Congress, Linköping, Sweden, 8–11 May 2011. [Google Scholar]
- Stephenson, J.; Barton, B.; Carrington, G.; Doering, A.; Ford, R.; Hopkins, D.; Lawson, R.; McCarthy, A.; Rees, D.; Scott, M.; et al. The energy cultures framework: Exploring the role of norms, practices and material culture in shaping energy behaviour in New Zealand. Energy Res. Soc. Sci. 2015, 7, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.; Carrington, G.; Lawson, R.; Stephenson, J. Socio-technical barriers to the use of energy-efficient timber drying technology in New Zealand. Energy Policy 2014, 67, 747–755. [Google Scholar] [CrossRef]
- Stragier, J.; Hauttekeete, L.; de Marez, L. Reducing Households’ Energy Use: A Segmentation of Flanders on Adoption Intention of Smart Metering Technology. In Proceedings of the WREC-World Renewable Energy Congress, Linköping, Sweden, 8–11 May 2011; Volume 3, p. 945. [Google Scholar]
- Schulze, M.; Nehler, H.; Ottosson, M.; Thollander, P. Energy management in industry—A systematic review of previous findings and an integrative conceptual framework. J. Clean. Prod. 2016, 112, 3692–3708. [Google Scholar] [CrossRef]
- ISO International Organization for Standardization. ISO 50001: Energy Management Systems—Requirements with Guidance for Use, 2011. Available online: http://www.iso.org/standard/51297.html (accessed on 18 October 2017).
- Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F.O. Integrating energy efficiency performance in production management-gap analysis between industrial needs and scientific literature. J. Clean. Prod. 2011, 19, 667–679. [Google Scholar] [CrossRef]
- Thollander, P.; Palm, J. Improving Energy Efficiency in Industrial Energy Systems: An Interdisciplinary Perspective on Barriers, Energy Audits, Energy Management, Policies, and Programs; Springer Science & Business Media: London, UK; New York, NY, USA, 2012. [Google Scholar]
- Fleiter, T.; Schleich, J.; Ravivanpong, P. Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany. Energy Policy 2012, 51, 863–875. [Google Scholar] [CrossRef]
- Meath, C.; Linnenluecke, M.; Griffiths, A. Barriers and motivators to the adoption of energy savings measures for small-and medium-sized enterprises (SMEs): The case of the ClimateSmart Business Cluster program. J. Clean. Prod. 2016, 112, 3597–3604. [Google Scholar] [CrossRef]
- Backlund, S.; Thollander, P.; Palm, J.; Ottosson, M. Extending the energy efficiency gap. Energy Policy 2012, 51, 392–396. [Google Scholar] [CrossRef]
- Nehler, T.; Rasmussen, J. How do firms consider non-energy benefits? Empirical findings on energy-efficiency investments in Swedish industry. J. Clean. Prod. 2016, 113, 472–482. [Google Scholar] [CrossRef]
- Thollander, P.; Danestig, M.; Rohdin, P. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs. Energy Policy 2007, 35, 5774–5783. [Google Scholar] [CrossRef]
- Trist, E.L.; Higgin, G.W.; Murray, H.; Pollock, A.B. Organizational Choice; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Balbinotti, G.; Paupitz, A. Internationally management of socio-technical projects—A case study in a vehicle assembly. Procedia Manuf. 2015, 3, 6345–6352. [Google Scholar] [CrossRef]
- Bostrom, R.P.; Heinen, J.S. MIS problems and failures: A socio-technical perspective, part II: The application of socio-technical theory. MIS Q. 1977, 1, 11–28. [Google Scholar] [CrossRef]
- Akyuz, E.; Celik, M. Application of CREAM human reliability model to cargo loading process of LPG tankers. J. Loss Prev. Process Ind. 2015, 34, 39–48. [Google Scholar] [CrossRef]
- Reason, J. Human Error; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Embrey, D.; Kontogiannis, T.; Green, M. Guidelines for Preventing Human Error in Process Safety; Center for Chemical Process Safety: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- McLeod, R.W. Human factors in barrier management: Hard truths and challenges. Process Saf. Environ. Prot. 2017, 110, 31–42. [Google Scholar] [CrossRef]
- Robbins, S.P.; Judge, T.A.; Vohra, N. Organizational Behaviour, 15th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Wickens, C.D.; Hollands, J.G.; Banbury, S.; Parasuraman, R. Engineering Psychology & Human Performance; Psychology Press: East Sussex, UK, 2015. [Google Scholar]
- Swain, A.D.; Guttmann, H.E. Handbook of Human-Reliability Analysis with Emphasis on Nuclear Power Plant Applications; Final Report; Sandia National Labs.: Albuquerque, NM, USA, 1983. [Google Scholar]
- Hollnagel, E. Cognitive Reliability and Error Analysis Method (CREAM); Elsevier: New York, NY, USA, 1998. [Google Scholar]
- Robbins, S.P.; Judge, T.A.; Millett, B. OB: The Essentials; Pearson Higher Education AU: Jersey City, NJ, USA, 2015. [Google Scholar]
- Herrmann, N. The creative brain. J. Creat. Behav. 1991, 25, 275–295. [Google Scholar] [CrossRef]
- Daniels, A.C.; Tapscott, D.; Caston, A. Bringing out the Best in People; Findaway World LLC: Solon, OH, USA, 2011. [Google Scholar]
- Fogg, B.J. A behavior model for persuasive design. In Proceedings of the 4th International Conference on Persuasive Technology, Claremont, CA, USA, 26–29 April 2009; ACM: New York, NY, USA, 2009; p. 40. [Google Scholar]
- Fogg, B.J. Fogg Behavior Model. Available online: http://behaviormodel.org/index.html (accessed on 18 December 2016).
Category | Theoretical Barriers |
---|---|
Market failure/market imperfection | Imperfect information |
Adverse selection | |
Principal-agent relationship | |
Split incentives | |
Nonmarket failures/nonmarket imperfections | Hidden costs |
Access to capital | |
Risk | |
Heterogeneity | |
Behavioral barriers | Form of information |
Credibility and trust | |
Values | |
Inertia | |
Bounded rationality | |
Organizational barriers | Power |
Culture |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.R.; Ávila, S.; Kalid, R.; Rodríguez, J.L.M. Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal. Energies 2018, 11, 1271. https://doi.org/10.3390/en11051271
Lopes JR, Ávila S, Kalid R, Rodríguez JLM. Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal. Energies. 2018; 11(5):1271. https://doi.org/10.3390/en11051271
Chicago/Turabian StyleLopes, José Rafael, Salvador Ávila, Ricardo Kalid, and Jorge Laureano Moya Rodríguez. 2018. "Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal" Energies 11, no. 5: 1271. https://doi.org/10.3390/en11051271
APA StyleLopes, J. R., Ávila, S., Kalid, R., & Rodríguez, J. L. M. (2018). Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal. Energies, 11(5), 1271. https://doi.org/10.3390/en11051271