Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine
Abstract
:1. Introduction
2. Wind Turbine Model
3. Control Methodology
3.1. Disturbance Observer Based Control (DOBC)
3.2. Parameterized DOBC with CPC
3.3. Parameterized DOBC with IPC
4. Problem Formulation
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Imran, R.M.; Akbar Hussain, D.M.; Soltani, M. DAC with LQR control design for pitch regulated variable speed wind turbine. In Proceedings of the 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), Vancouver, BC, Canada, 28 September–2 October 2014. [Google Scholar]
- Imran, R.M.; Akbar Hussain, D.M.; Soltani, M. DAC to mitigate the effect of periodic disturbances on drive train using collective pitch for variable speed wind turbine. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015. [Google Scholar]
- Johansson, K.H.; James, B.; Bryant, G.F.; Astrom, K.J. Multivariable controller tuning. In Proceedings of the 1998 American Control Conference, Philadelphia, PA, USA, 24–26 June 1998; Volume 6. [Google Scholar]
- Njiri, J.G.; Liu, Y.; Söffker, D. Multivariable control of large variable-speed wind turbines for generator power regulation and load reduction. IFAC-PapersOnLine 2015, 48, 544–549. [Google Scholar] [CrossRef]
- Boukhezzar, B.; Lupu, L.; Siguerdidjane, H.; Hand, M. Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 2007, 32, 1273–1287. [Google Scholar] [CrossRef]
- Chen, W.H.; Yang, J.; Guo, L.; Li, S. Disturbance observer-based control and related methods: An overview. IEEE Trans. Ind. Electron. 2016, 63, 1083–1095. [Google Scholar] [CrossRef]
- Østergaard, K.Z.; Stoustrup, J.; Brath, P. Linear parameter varying control of wind turbines covering both partial load and full load conditions. Int. J. Robust Nonlinear Control 2009, 19, 92–116. [Google Scholar] [CrossRef]
- Hangstrup, M.E.; Stoustrup, J.; Andersen, P.; Pedersen, T.S. Gain-scheduled control of a fossil-fired power plant boiler. In Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, HI, USA, 22–27 August 1999; Volume 2. [Google Scholar]
- Meng, W.; Yang, Q.; Ying, Y.; Sun, Y.; Yang, Z.; Sun, Y. Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Trans. Energy Convers. 2013, 28, 716–725. [Google Scholar] [CrossRef]
- Kim, S.-K.; Song, H.; Lee, J.-H. Adaptive disturbance observer-based parameter-independent speed control of an uncertain permanent magnet synchronous machine for wind power generation applications. Energies 2015, 8, 4496–4512. [Google Scholar] [CrossRef]
- Meng, W.; Yang, Q.; Sun, Y. Guaranteed performance control of DFIG variable-speed wind turbines. IEEE Trans. Control Syst. Technol. 2016, 24, 2215–2223. [Google Scholar] [CrossRef]
- Adánez, J.M.; Al-Hadithi, B.M.; Jiménez, A. Wind Turbine Multivariable Optimal Control Based on Incremental State Model. Asian J. Control 2017. [Google Scholar] [CrossRef]
- Al-Hadithi, B.M.; Jiménez, A.; Perez-Oria, J. New incremental Takagi–Sugeno state model for optimal control of multivariable nonlinear time delay systems. Eng. Appl. Artif. Intell. 2015, 45, 259–268. [Google Scholar] [CrossRef]
- Rosyiana, F.I.; Kim, J.-S.; Song, H. High-Gain Disturbance Observer-Based Robust Load Frequency Control of Power Systems with Multiple Areas. Energies 2017, 10, 595. [Google Scholar]
- Qi, X.; Bai, Y. Improved Linear Active Disturbance Rejection Control for Microgrid Frequency Regulation. Energies 2017, 10, 1047. [Google Scholar] [CrossRef]
- Menezes, E.J.N.; Araujo, A.M.; Rohatgi, J.S.; del Foyo, P.M.G. Active load control of large wind turbines using state-space methods and disturbance accommodating control. Energy 2018, 150, 310–319. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, Z.; Sun, C. Disturbance-observer-based output feedback control of non-linear cascaded systems with external disturbance. IET Control Theory Appl. 2017, 12, 738–744. [Google Scholar] [CrossRef]
- Imran, R.M.; Akbar Hussain, D.M.; Chen, Z. LQG controller design for pitch regulated variable speed wind turbine. In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Cavtat, Croatia, 13–16 May 2014. [Google Scholar]
- Imran, R.M.; Akbar Hussain, D.M.; Soltani, M.; Rafaq, R.M. Optimal Tuning of Multivariable Disturbance-Observer-Based Control for Flicker Mitigation Using IPC of Wind Turbine. J. IET Renew. Power Gener. 2017, 11, 1121–1128. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Buhl, M.L., Jr. FAST User’S Guide; Technical Report No. NREL/EL-500-38230; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Imran, R.M. Multivariable Control for Load Mitigation of Wind Turbine. Ph.D. Thesis, Aalborg University, Esbjerg, Denmark, 2016. [Google Scholar]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Laboratory: Golden, CO, USA, 2009. [Google Scholar]
- Anderson, B.; Moore, J.B. Optimal Control: Linear Quadratic Methods; Courier Corporation: North Chelmsford, MA, USA, 2007. [Google Scholar]
- Pintea, A.; Wang, H.; Christov, N.; Borne, P.; Popescu, D.; Badea, A. Optimal control of variable speed wind turbines. In Proceedings of the 2011 19th Mediterranean Conference on Control & Automation (MED), Corfu, Greece, 20–23 June 2011. [Google Scholar]
- Bossanyi, E.A. Individual blade pitch control for load reduction. Wind Energy 2003, 6, 119–128. [Google Scholar] [CrossRef]
- Goodwin, G.C.; Graebe, S.F.; Salgado, M.E. Control System Design; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 13. [Google Scholar]
- Yuan, Y.; Chen, X.; Tang, J. Disturbance Observer-Based Pitch Control of Wind Turbines for Enhanced Speed Regulation. J. Dyn. Syst. Meas. Control 2017, 139, 071006. [Google Scholar] [CrossRef]
- Soltani, M.N.; Knudsen, T.; Svenstrup, M.; Wisniewski, R.; Brath, P.; Ortega, R.; Johnson, K. Estimation of rotor effective wind speed: A comparison. IEEE Trans. Control Syst. Technol. 2013, 21, 1155–1167. [Google Scholar] [CrossRef]
- Kelley, N.D.; Jonkman, B.J. Overview of the TurbSim Stochastic Inflow Turbulence Simulator; Technical Report, NREL/TP-500-41137; National Renewable Energy Laboratory: Golden, CO, USA, 2007. [Google Scholar]
WECS Subsystem | Equations |
---|---|
Aerodynamic | |
Drive-train | |
Tower | |
Pitch Actuator | |
Generator | |
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
R | 63 | m | 1.22 | kg/ | |
97 | - | 3.54 × | |||
8.67 × | Nm/rad | 6.21 × | Nm/(rad/s) | ||
6.56 × | kg | 2.72 × | Nm/rad | ||
2.67 × | Nm/(rad/s) | 94.4 | % |
Properties | Values |
---|---|
Rating | 5 MW |
Rotor Orientation, Configuration | Upwind, 3 Blades |
Control | Variable Speed, Collective Pitch |
Drivetrain | High Speed, Multiple-Stage Gearbox |
Rotor, Hub Diameter | 126 m, 3 m |
Hub Height | 90 m |
Cut-In, Rated, Cut-Out Wind Speed | 3 m/s, 11.4 m/s, 25 m/s |
Cut-In, Rated Rotor Speed | 6.9 rpm, 12.1 rpm |
Rotor Mass | 110,000 kg |
Tower Mass | 347,460 kg |
Parameter | FixedGain-CPC | LPV-CPC | LPV-IPC |
---|---|---|---|
Gen. Speed (rpm) | 14.22 | 12.95 | 5.73 |
Torsion (rad) | 0.950 | 0.930 | 0.680 |
Tower Moment (KNm) | 0.034 | 0.033 | 0.021 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, R.M.; Hussain, D.M.A.; Chowdhry, B.S. Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine. Energies 2018, 11, 1296. https://doi.org/10.3390/en11051296
Imran RM, Hussain DMA, Chowdhry BS. Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine. Energies. 2018; 11(5):1296. https://doi.org/10.3390/en11051296
Chicago/Turabian StyleImran, Raja M., D. M. Akbar Hussain, and Bhawani Shanker Chowdhry. 2018. "Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine" Energies 11, no. 5: 1296. https://doi.org/10.3390/en11051296
APA StyleImran, R. M., Hussain, D. M. A., & Chowdhry, B. S. (2018). Parameterized Disturbance Observer Based Controller to Reduce Cyclic Loads of Wind Turbine. Energies, 11(5), 1296. https://doi.org/10.3390/en11051296