Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue
Abstract
:1. Introduction
2. Proposed Method
2.1. The Case Study
2.2. Externalizing the Share of Choice
2.3. The Model
2.4. Data
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LED | Light-Emitting Diode |
WTP | Willingness To Pay |
PJ | Petajoule |
GHG | Greenhouse Gas |
MARKAL | Market Allocation |
TIMES | The Integrated MARKAL-EFOM System |
MESSAGE | Model for Energy Supply Strategy Alternatives and their General Environmental Impact |
OSeMOSYS | Open Source Energy Modelling System |
DICE | Dynamic Integrated Climate-Economy |
RICE | Regional Integrated Climate-Economy |
EPPA | Emissions Prediction and Policy Analysis |
IAM | Integrated Assessment Model |
IGSM | Integrated Global System Model |
WEM | World Energy Model |
GCAM | Global Change Assessment Model |
CPU | Central Processing Unit |
LED | Light-Emitting Diode |
WTP | Willingness To Pay |
PJ | Petajoule |
GHG | greenhouse gas |
MARKAL | Market Allocation |
TIMES | The Integrated MARKAL-EFOM System |
MESSAGE | Model for Energy Supply Strategy Alternatives and their General Environmental Impact |
OSeMOSYS | Open Source Energy Modelling System |
DICE | Dynamic Integrated Climate-Economy |
RICE | Regional Integrated Climate-Economy |
EPPA | Emissions Prediction and Policy Analysis |
IAM | Integrated Assessment Model |
IGSM | Integrated Global System Model |
WEM | World Energy Model |
GCAM | Global Change Assessment Model |
CPU | Central Processing Unit |
RAM | Random-Access Memory |
GHz | Gigahertz |
Go | Giga Octets |
NEMS | The National Energy Modeling System |
Appendix A. Modifications in the OSeMOSYS Code
set CAMPAIGN; set SUBVENTION; param COST_CAMPAIGN{c in CAMPAIGN}; param ACCEPTANCE_SUBVENTION; var campaign{c in CAMPAIGN} binary; var subvention{s in SUBVENTION} binary; var cost_subvention; var LED_bought; # million LED bulbs bought param BIGM; param SHARE{c in CAMPAIGN, s in SUBVENTION};
minimize cost: (sum{r in REGION, y in YEAR} TotalDiscountedCost[r,y]) + (sum{c in CAMPAIGN} COST_CAMPAIGN[c] * campaign[c]) + cost_subvention;
subject to E_LED_bought: LED_bought = (sum {r in REGION, t in TECHNOLOGY, y in YEAR: t = 'RL2'}NewCapacity[r,t,y])*278/14 ;
subject to E1_cost_subvention{s in SUBVENTION}: cost_subvention <= ACCEPTANCE_SUBVENTION *LED_bought*s + BIGM* (1-subvention[s]);
subject to E2_cost_subvention{s in SUBVENTION}: cost_subvention >= ACCEPTANCE_SUBVENTION *LED_bought*s - BIGM* (1-subvention[s]);
subject to normalisation1: sum {c in CAMPAIGN} campaign[c]=1;
subject to normalisation2: sum {s in SUBVENTION} subvention[s]=1;
subject to share_a1{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION: y<first(YEAR)+ OperationalLife[r,"RL1"]}: NewCapacity[r,"RL1",y] <= NewCapacity[r,"RL2",y]*((1-SHARE[c,s])/SHARE[c,s]) + BIGM *(1-subvention[s])+ BIGM *(1- campaign[c]) ;
subject to share_1b1{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION: y<first(YEAR)+ OperationalLife[r,"RL1"]}: NewCapacity[r,"RL1",y]>= NewCapacity[r,"RL2",y]*((1-SHARE[c,s])/SHARE[c,s]) - BIGM *(1-subvention[s])- BIGM *(1-campaign[c]) ;
subject to share_a2{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION: y>=first(YEAR)+ OperationalLife[r,"RL1"] and y< first(YEAR)+ OperationalLife[r,"RL2"] }: NewCapacity[r,"RL1",y] - NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] <= NewCapacity[r,"RL2",y]*((1-SHARE[c,s])/SHARE[c,s]) + BIGM *(1-subvention[s])+ BIGM *(1-campaign[c]) ;
subject to share_b2{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION: y>=first(YEAR)+ OperationalLife[r,"RL1"] and y< first(YEAR)+ OperationalLife[r,"RL2"] }: NewCapacity[r,"RL1",y] - NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] >= NewCapacity[r,"RL2",y]*((1-SHARE[c,s])/SHARE[c,s]) - BIGM *(1-subvention[s])- BIGM *(1-campaign[c]) ;
subject to share_a3{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION: y>= first(YEAR)+ OperationalLife[r,"RL2"]}: NewCapacity[r,"RL1",y] - NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] <= (NewCapacity[r,"RL2",y] -NewCapacity[r,"RL2",y-OperationalLife[r,"RL2"]]) *((1-SHARE[c,s])/SHARE[c,s]) + BIGM *(1-subvention[s])+ BIGM *(1-campaign[c]) ;
subject to share_b3{r in REGION, y in YEAR, c in CAMPAIGN, s in SUBVENTION: y>= first(YEAR)+ OperationalLife[r,"RL2"]}: NewCapacity[r,"RL1",y] - NewCapacity[r,"RL1",y-OperationalLife[r,"RL1"]] >= (NewCapacity[r,"RL2",y] -NewCapacity[r,"RL2",y-OperationalLife[r,"RL2"]]) *((1-SHARE[c,s])/SHARE[c,s]) - BIGM *(1-subvention[s])- BIGM *(1-campaign[c]) ;The following modifications are made in the data file:
set CAMPAIGN:= 0 1; set SUBVENTION:= 0 1 2 3 4 5 6 7 8 9;
param COST_CAMPAIGN:= 0 0 1 20; param ACCEPTANCE_SUBVENTION:= 0.5; param BIGM:=9999;
param SHARE:= 0 0 0.600 0 1 0.600 . . . 1 8 0.983 1 9 0.992 ;
References
- Kohl, W.L. After the Second Oil Crisis: Energy Policies in Europe, America, and Japan; Lexington Books: Lanham, MD, USA, 1982. [Google Scholar]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Springer, U. The market for tradable GHG permits under the Kyoto Protocol: A survey of model studies. Energy Econ. 2003, 25, 527–551. [Google Scholar] [CrossRef]
- Luhmann, H.J.; Arens, C. Von den flexiblen Mechanismen des Kyoto Protokolls zu den kooperativen Ansatzen des Ubereinkommens von Paris. Z. Umweltpolit. Umweltr./J. Environ. Law Policy 2016, 39, 95–101. [Google Scholar]
- DeCarolis, J.; Daly, H.; Dodds, P.; Keppo, I.; Li, F.; McDowall, W.; Pye, S.; Strachan, N.; Trutnevyte, E.; Usher, W.; et al. Formalizing best practice for energy system optimization modelling. Appl. Energy 2017, 194, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Riva, F.; Tognollo, A.; Gardumi, F.; Colombo, E. Long-term energy planning and demand forecast in remote areas of developing countries: Classification of case studies and insights from a modelling perspective. Energy Strategy Rev. 2018, 20, 71–89. [Google Scholar] [CrossRef]
- Wiese, F.; Hilpert, S.; Kaldemeyer, C.; Pleßmann, G. A qualitative evaluation approach for energy system modelling frameworks. Energy Sustain. Soc. 2018, 8, 13. [Google Scholar] [CrossRef]
- Fishbone, L.G.; Giesen, G.; Goldstein, G.; Hymmen, H.A.; Stocks, K.J.; Vos, H.; Wilde, D.; Zoelcher, R.; Balzer, C.; Abilock, H. User’s guide for MARKAL (BNL/KFA Version 2. 0). A multi-period, linear-programming model for energy systems analysis. 1983. Available online: https://www.osti.gov/biblio/5419690 (accessed on 5 July 2018).
- Fishbone, L.G.; Abilock, H. MARKAL, a linear-programming model for energy systems analysis: Technical description of the BNL version. Int. J. Energy Res. 1981, 5, 353–375. [Google Scholar] [CrossRef]
- Loulou, R.; Remme, U.; Kanudia, A.; Lehtila, A.; Goldstein, G. Documentation for the TIMES Model. 2016. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 5 July 2018).
- Loulou, R.; Labriet, M. ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure. Comput. Manag. Sci. 2008, 5, 7–40. [Google Scholar] [CrossRef]
- Schrattenholzer, L. The Energy Supply Model MESSAGE; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1981; Available online: http://pure.iiasa.ac.at/id/eprint/1542/ (accessed on 5 July 2018).
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The open source energy modeling system: An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Gardumi, F.; Shivakumar, A.; Morrison, R.; Taliotis, C.; Broad, O.; Beltramo, A.; Sridharan, V.; Howells, M.; Hörsch, J.; Niet, T.; et al. From the development of an open-source energy modelling tool to its application and the creation of communities of practice: The example of OSeMOSYS. Energy Strategy Rev. 2018, 20, 209–228. [Google Scholar] [CrossRef]
- Nordhaus, W.D. An Optimal Transition Path for Controlling Greenhouse Gases. Science 1992, 258, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Nordhaus, W.D. Managing The Global Commons: The Economics of Climate Change; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Babiker, M.B.; Reilly, J.M.; Mayer, M.; Eckaus, R.S.; Wing, I.S.; Hyman, R.C. The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Revisions, Sensitivities, and Comparisons of Results. 2001. Available online: https://globalchange.mit.edu/publication/14577 (accessed on 5 July 2018).
- Hirst, E.; Brown, M. Closing the efficiency gap: Barriers to the efficient use of energy. Resour. Conserv. Recycl. 1990, 3, 267–281. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Stavins, R.N. The energy-efficiency gap What does it mean? Energy Policy 1994, 22, 804–810. [Google Scholar] [CrossRef]
- Gillingham, K.; Palmer, K. Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence. Rev. Environ. Econ. Policy 2014, 8, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Solnørdal, M.T.; Foss, L. Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms. Energies 2018, 11, 518. [Google Scholar] [CrossRef]
- Hourcade, J.C.; Jaccard, M.; Bataille, C.; Ghersi, F. Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal. Energy J. 2006, SI2006. [Google Scholar] [CrossRef]
- Helgesen, P.I. Top-Down and Bottom-Up: Combining Energy System Models and Macroeconomic General Equilibrium Models; Technical Report; Trondheim Norwegian University of Science and Technology: Trondheim, Norway, 2013. [Google Scholar]
- Prinn, R.G. Development and application of earth system models. Proc. Natl. Acad. Sci. USA 2013, 110, 3673–3680. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, A.P.; Schlosser, C.A.; Dutkiewicz, S.; Paltsev, S.; Kicklighter, D.W.; Jacoby, H.D.; Prinn, R.G.; Forest, C.E.; Reilly, J.; Wang, C.; et al. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation. 2005. Available online: http://web.mit.edu/globalchange/www/MITJPSPGC_Rpt124.pdf (accessed on 5 July 2018).
- IEA. World Energy Model, Documentation; Technical Report; International Energy Agency: Paris, France, 2017. [Google Scholar]
- Edmonds, J.; Wise, M.; Pitcher, H.; Richels, R.; Wigley, T.; Maccracken, C. An integrated assessment of climate change and the accelerated introduction of advanced energy technologies. Mitig. Adapt. Strateg. Glob. Chang. 1997, 1, 311–339. [Google Scholar] [CrossRef]
- Kim, S.H.; Edmonds, J.; Lurz, J.; Smith, S.J.; Wise, M. The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation. Energy J. 2006, 27, 63–91. [Google Scholar] [CrossRef]
- Benartzi, S.; Beshears, J.; Milkman, K.L.; Sunstein, C.R.; Thaler, R.H.; Shankar, M.; Tucker-Ray, W.; Congdon, W.J.; Galing, S. Should Governments Invest More in Nudging? Psychol. Sci. 2017, 28, 1041–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebert, L.C.; Sbicca, A.; Aoki, A.R.; Lambert-Torres, G. A Behavioral Economics Approach to Residential Electricity Consumption. Energies 2017, 10, 768. [Google Scholar] [CrossRef]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 2015, 41, 1385–1394. [Google Scholar] [CrossRef]
- Andor, M.A.; Fels, K.M. Behavioral Economics and Energy Conservation—A Systematic Review of Non-price Interventions and Their Causal Effects. Ecol. Econ. 2018, 148, 178–210. [Google Scholar] [CrossRef]
- Delgado, L.; Shealy, T. Opportunities for greater energy efficiency in government facilities by aligning decision structures with advances in behavioural science. Renew. Sustain. Energy Rev. 2018, 82, 3952–3961. [Google Scholar] [CrossRef]
- Jensen, I.G.; Münster, M.; Pisinger, D. Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses. Eur. J. Oper. Res. 2017, 262, 744–758. [Google Scholar] [CrossRef]
- Balaman, Ş.Y.; Selim, H. Sustainable design of renewable energy supply chains integrated with district heating systems: A fuzzy optimization approach. J. Clean. Prod. 2016, 133, 863–885. [Google Scholar] [CrossRef]
- Chen, Y.; He, L.; Guan, Y.; Lu, H.; Li, J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energy Convers. Manag. 2017, 134, 382–398. [Google Scholar] [CrossRef]
- Murphy, F.; Sosa, A.; McDonnell, K.; Devlin, G. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction. Energy 2016, 109, 1040–1055. [Google Scholar] [CrossRef]
- Pourhejazy, P.; Kwon, O.K. The New Generation of Operations Research Methods in Supply Chain Optimization: A Review. Sustainability 2016, 8, 1033. [Google Scholar] [CrossRef]
- Govindan, K.; Fattahi, M.; Keyvanshokooh, E. Supply chain network design under uncertainty: A comprehensive review and future research directions. Eur. J. Oper. Res. 2017, 263, 108–141. [Google Scholar] [CrossRef]
- Rajeev, A.; Pati, R.K.; Padhi, S.S.; Govindan, K. Evolution of sustainability in supply chain management: A literature review. J. Clean. Prod. 2017, 162, 299–314. [Google Scholar] [CrossRef]
- Debreu, G. Representation of a Preference Ordering by a Numerical Function. In Decision Processes; Thrall, R.M., Coombs, C.H., Davis, R.L., Eds.; John Wiley & Sons: New York, NY, USA, 1954; pp. 159–165. [Google Scholar]
- Debreu, G. Topological Methods in Cardinal Utility Theory. In Mathematical Methods in the Social Sciences, 1959; Arrow, K.J., Karlin, S., Suppes, P., Eds.; Stanford University Press: Stanford, CA, USA, 1960; pp. 16–26. [Google Scholar]
- Luce, R.; Tukey, J.W. Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. J. Math. Psychol. 1964, 1, 1–27. [Google Scholar] [CrossRef]
- Green, P.E.; Rao, V.R. Conjoint Measurement for Quantifying Judgmental Data. J. Mark. Res. 1971, 8, 355–363. [Google Scholar] [CrossRef]
- Agarwal, J.; Desarbo, W.S.; Malhotra, N.K.; Rao, V.R. An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research. Cust. Needs Solut. 2015, 2, 19–40. [Google Scholar] [CrossRef]
- Zufryden, F.S. A Conjoint Measurement-Based Approach for Optimal New Product Design and Market Segmentation. In Analytic Approaches to Product and Marketing Planning: Proceedings of Workshop; Shocker, A., Ed.; Marketing Science Institute: Cambridge, MA, USA, 1977; pp. 100–114. [Google Scholar]
- Easton, F.F.; Pullman, M.E. Optimizing Service Attributes: The Seller’s Utility Problem. Decis. Sci. 2001, 32, 251–276. [Google Scholar] [CrossRef]
- Fragnière, E.; Heitz, C.; Moresino, F. The Concept of Shadow Price to Monetarize the Intangible Value of Expertise. In Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Beijing, China, 12–15 October 2008; pp. 1736–1741. [Google Scholar]
- Fragnière, E.; Moresino, F.; Zheng, N. Development of Pricing Models for Intangible Services Based on Conjoint Analysis and Mathematical Programming: A Case Study About the Design of Credit Card Services in China. In Proceedings of the 2011 Service Research and Innovation Institute Conference, San Jose, CA, USA, 29 March–2 April 2011; pp. 653–662. [Google Scholar]
- Fragnière, E.; Moresino, F.; Shen, Y. Application of Share of Choice Model in Insurance Industry Based on Conjoint Analysis and Mathematical Programming. In Proceedings of the 2012 IEEE International Conference on Service Operations and Logistics, and Informatics, Suzhou, China, 8–10 July 2012; pp. 404–409. [Google Scholar]
- Fragnière, E.; Lombardi, A.; Moresino, F. Designing and Pricing Services Based on Customer-Perceived Value: An Airline Company Feasibility Study. Ser. Sci. 2012, 4, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Fragnière, E.; Kanala, R.; Moresino, F.; Reveiu, A.; Smeureanu, I. Coupling techno-economic energy models with behavioural approaches. Oper. Res. 2017, 17, 633–647. [Google Scholar]
- Fragnière, E.; Kanala, R.; Lavigne, D.; Moresino, F.; Nguene, G. Behavioral and Technological Changes Regarding Lighting Consumptions: A MARKAL Case Study. Low Carbon Econ. 2010, 1, 8–17. [Google Scholar] [CrossRef]
Data | Notation | Notation in OSeMOSYS |
Year, period | y in YEAR | |
Information campaign level | c in CAMPAIGN | |
Subvention level | s in SUBVENTION | |
Cost of the information campaign | COST_CAMPAIGN[c] | |
Subvention’s acceptance factor | a | ACCEPTANCE_SUBVENTION |
Market share of LED bulbs | SHARE[c,s] | |
Fluorescent bulb operational life | OperationalLife[,“RL1”] | |
LED bulb operational life | OperationalLife[,“RL2”] | |
Big number | M | BIGM |
Decision variable | Notation | Notation in OSeMOSYS |
Information campaign level | campaign[c] | |
Subvention level | subvention[s] | |
New capacity of fluorescent bulbs | NewCapacity[,“RL1”,y] | |
New capacity of LED bulbs | NewCapacity[,“RL2”,y] | |
Help variable | Notation | Notation in OSeMOSYS |
Subvention’s cost | cost_subvention | |
Total LED bulbs bought | z | LED_bought |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moresino, F.; Fragnière, E. Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue. Energies 2018, 11, 1787. https://doi.org/10.3390/en11071787
Moresino F, Fragnière E. Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue. Energies. 2018; 11(7):1787. https://doi.org/10.3390/en11071787
Chicago/Turabian StyleMoresino, Francesco, and Emmanuel Fragnière. 2018. "Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue" Energies 11, no. 7: 1787. https://doi.org/10.3390/en11071787
APA StyleMoresino, F., & Fragnière, E. (2018). Combining Behavioral Approaches with Techno-Economic Energy Models: Dealing with the Coupling Non-Linearity Issue. Energies, 11(7), 1787. https://doi.org/10.3390/en11071787