Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon
Abstract
:1. Introduction
- Since the manufacturer’s datasheet provides STC data only, most models tend to extract parameters from these data, causing the following drawbacks to occur:
- -
- They produce accurate I-V curves under STC, while their performance decays for other irradiance conditions, especially at low irradiance levels;
- -
- Even under STC, some models produce better I-V curves near the MPP region, while the accuracy of curves degrades in other regions;
- -
- Rp and Rs are estimated through either extensive iterative methods or advanced, intelligent schemes, which increase the burden of computation time and complexity, while non-iterative methods are less accurate.
- The core issue in the past proposed models is the static approximation of resistive parameters, in which Rp and Rs, once estimated at STC, not only remain constant around STC but the same values of Rp and Rs are adopted for other conditions, as, for example, with low irradiance (200 W/m2). Thus, models lacked an adaptive ability with varying irradiance levels:
- -
- The above-mentioned point is a major reason for the development of more complex models such as double diode and dynamic models;
- -
- It is also observed that, because of static Rp and Rs values, the models tend to give unrealistic large negative values at open-circuit voltage.
2. Mathematical Model of PV Module
2.1. Determination of Current Parameters
2.2. Determination of Resistance Parameters
2.2.1. Data-Mining Using CAD Software
2.2.2. Estimation of Rp Value
2.2.3. Estimation of Rs Value
3. Discussion of Implementation, Validation, and Comparative Study
- Its parametric extraction is free from any complex or optimization procedures.
- It provides a non-iterative solution from 0 to Vmpp, while it only requires simple numerical iterations to estimate I from Vmpp to Voc.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
I & V | Operating current and voltage of PV module |
Isc & Voc | Short-circuit current and open-circuit of PV module |
Impp & Vmpp | Maximum power point current and voltage of PV module |
Iph | Photo-generated current by the current source |
ID | Current passing through the diode |
ki | Proportionality factor between Isc and Impp |
kv | Proportionality factor between Voc and Vmpp |
Rs & Rp | Series resistance and parallel resistance of PV module |
Rs_model | Proposed value of series resistance |
Rp_model | Proposed value of parallel resistance |
α | Temperature coefficient of Isc at STC |
β | Temperature coefficient of Voc at STC |
References
- Cárdenas, A.A.; Carrasco, M.; Mancilla-David, F.; Street, A.; Cárdenas, R. Experimental parameter extraction in the single-diode photovoltaic model via a reduced-space search. IEEE Trans. Ind. Electr. 2017, 64, 1468–1476. [Google Scholar] [CrossRef]
- Sher, H.A.; Murtaza, A.F.; Addoweesh, K.E.; Chiaberge, M. Pakistan’s progress in solar PV based energy generation. Renew. Sustain. Energy Rev. 2015, 47, 213–217. [Google Scholar] [CrossRef]
- Batzelis, E.I.; Papathanassiou, S.A. A Method for the Analytical Extraction of the Single-Diode PV Model Parameters. IEEE Trans. Sustain. Energy 2016, 7, 504–512. [Google Scholar] [CrossRef]
- Silva, E.A.; Bradaschia, F.; Cavalcanti, M.C.; Nascimento, A.J. Parameter estimation method to improve the accuracy of photovoltaic electrical model. IEEE J. Photovolt. 2016, 6, 278–285. [Google Scholar] [CrossRef]
- Hosseini, S.M.H.; Keymanesh, A.A. Design and construction of photovoltaic simulator based on dual-diode model. Sol. Energy 2016, 137, 594–607. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Syafaruddin. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy 2011, 85, 2217–2227. [Google Scholar] [CrossRef]
- Hejri, M.; Mokhtari, H. On the Comprehensive Parameterization of the Photovoltaic (PV) Cells and Modules. IEEE J. Photovolt. 2017, 7, 250–258. [Google Scholar] [CrossRef]
- Spertino, F.; D’Angola, A.; Enescu, D.; Di Leo, P.; Fracastoro, G.V.; Zaffina, R. Thermal-electrical model for energy estimation of a water cooled photovoltaic module. Sol. Energy 2016, 133, 119–140. [Google Scholar] [CrossRef]
- Jena, D.; Ramana, V.V. Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review. Renew. Sustain. Energy Rev. 2015, 52, 400–417. [Google Scholar] [CrossRef]
- Xiao, W.; Edwin, F.F.; Spagnuolo, G.; Jatskevich, J. Efficient approaches for modeling and simulating photovoltaic power systems. IEEE J. Photovolt. 2013, 3, 500–508. [Google Scholar] [CrossRef]
- Rahman, S.A.; Varma, R.K.; Vanderheide, T. Generalised model of a photovoltaic panel. IET Renew. Power Gener. 2014, 8, 217–229. [Google Scholar] [CrossRef]
- Hasanien, H.M. Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification. IEEE Tran. Sustain. Energy 2015, 6, 509–515. [Google Scholar] [CrossRef]
- Moshksar, E.; Ghanbari, T. Adaptive Estimation Approach for Parameter Identification of Photovoltaic Modules. IEEE J. Photovolt. 2017, 7, 614–623. [Google Scholar] [CrossRef]
- Xue, L.; Sun, L.; Wei, H.; Jiang, C. Solar cells parameter extraction using a hybrid genetic algorithm. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Shanghai, China, 6–7 January 2011. [Google Scholar]
- Huang, W.; Jiang, C.; Xue, L.; Song, D. Extracting solar cell model parameters based on chaos particle swarm algorithm. In Proceedings of the International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011. [Google Scholar]
- Veissid, N.; Bonnet, D.; Richter, H. Experimental Investigation of the double exponential of a solar cell under illuminated conditions: considering the instrumental uncertainties in the current, voltage and temperature values. Solid-State Electron. 1995, 38, 1937–1943. [Google Scholar] [CrossRef]
- Cerofolini, G.F.; Polignano, M.L. Generation-recombination phenomena in almost ideal silicon p-n junctions. J. Appl. Phys. 1989, 64, 6349–6356. [Google Scholar] [CrossRef]
- Prorok, M.; Werner, B.; Zdanowicz, T. Applicability of equivalent diode models to modeling various, thin-film photovoltaic (PV) modules in a wide range of temperature and irradiance conditions. Electron Technol. Internet J. 2006, 37, 78–88. [Google Scholar]
- Attivissimo, F.; Adamo, F.; Carullo, A.; Lanzolla, A.M.L.; Spertino, F.; Vallan, A. On the performance of the double-diode model in estimating the maximum power point for different photovoltaic technologies. Measurement 2013, 46, 3549–3559. [Google Scholar] [CrossRef]
- Adamo, F.; Attivissimo, F.; Di Nisio, A.; Spadavecchia, M. Characterization and testing of a tool for photovoltaic panel modeling. IEEE Trans. Instrum. Meas. 2011, 60, 1613–1622. [Google Scholar] [CrossRef]
- Gow, J.A.; Manning, C.D. Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Electr. Power Appl. 1999, 146, 193–200. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electr. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution. Energy Convers. Manag. 2016, 124, 42–50. [Google Scholar] [CrossRef]
- Highlights of KYOCERA Photovoltaic Modules. Available online: https://www.kyocerasolar.com/dealers/product-center/archives/spec-sheets/KC200GT.pdf (accessed on 21 May 2018).
- 340 W Maximum Power High Efficiency Mono-crystalline Solar Module. Available online: https://cdn.enfsolar.com/Product/pdf/Crystalline/594749db3bd6f.pdf (accessed on 21 May 2018).
Models | Root Mean Square Error under STC | Complex/ Optimization Procedures | Iterative Solution | |||
---|---|---|---|---|---|---|
Constant Current Region | MPP Region | Slope Region | 0 to Vmpp | Vmpp to Voc | ||
Proposed | 0.024 | 0.032 | 0.053 | No | No | Yes |
Model [13] | 0.077 | 0.108 | 0.385 | Yes | Yes | Yes |
Model [7] | 0.088 | 0.117 | 0.422 | Yes | Yes | Yes |
Model [12] | 0.069 | 0.111 | 0.441 | Yes | Yes | Yes |
Model [4] | 0.028 | 0.055 | 0.326 | Yes | Yes | Yes |
Conditions at 25 °C | Root Mean Square Error | |
---|---|---|
Proposed Model | Model [7] | |
800 W/m2 | 0.041 | 0.187 |
600 W/m2 | 0.022 | 0.135 |
400 W/m2 | 0.031 | 0.115 |
200 W/m2 | 0.044 | 0.080 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtaza, A.F.; Munir, U.; Chiaberge, M.; Di Leo, P.; Spertino, F. Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon. Energies 2018, 11, 2138. https://doi.org/10.3390/en11082138
Murtaza AF, Munir U, Chiaberge M, Di Leo P, Spertino F. Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon. Energies. 2018; 11(8):2138. https://doi.org/10.3390/en11082138
Chicago/Turabian StyleMurtaza, Ali F., Umer Munir, Marcello Chiaberge, Paolo Di Leo, and Filippo Spertino. 2018. "Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon" Energies 11, no. 8: 2138. https://doi.org/10.3390/en11082138
APA StyleMurtaza, A. F., Munir, U., Chiaberge, M., Di Leo, P., & Spertino, F. (2018). Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon. Energies, 11(8), 2138. https://doi.org/10.3390/en11082138