Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.3. Analysis Methods
2.3.1. Characterization Analysis Methods
2.3.2. Structural Analysis
3. Results and Discussion
3.1. Biochar Characterization
3.2. Structural Analysis
3.2.1. Brunauer–Emmett–Teller Analysis and Pore Size Distribution
3.2.2. Scanning Electron Microscopy Analysis
3.2.3. Fourier Transform Infrared Analysis
3.2.4. X-ray Diffraction Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Glaser, B.; Parr, M.; Braun, C.; Kopolo, G. Biochar is carbon negative. Nat. Geosci. 2009, 2. [Google Scholar] [CrossRef]
- Mathews, J.A. Carbon-negative biofuels. Energy Policy 2008, 36, 940–945. [Google Scholar] [CrossRef]
- Guizani, C.; Jeguirim, M.; Valin, S.; Limousy, L.; Salvador, S. Biomass chars: The effects of pyrolysis conditions on their morphology, structure, chemical properties and reactivity. Energies 2017, 10. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V.; Palacios, J.H.; Grenier, M.; Zegan, D. The production of engineered biochars in a vertical auger pyrolysis reactor for carbon sequestration. Energies 2017, 10. [Google Scholar] [CrossRef]
- Ghorbel, L.; Rouissi, T.; Brar, S.K.; López-González, D.; Amarillo Ramirez, A.; Godbout, S. Value-added performance of processed cardboard and farm breeding compost by pyrolysis. Waste Manag. 2015, 38, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.; Sharifi, V.N.; Swithenbank, J. Waste pyrolysis and generation of storable char. Int. J. Energy Res. 2007, 31, 177–191. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. CSIRO Land Water Sci. Rep. 2009, 5, 17–31. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars:Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Ronsse, F.; Van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar:Influence of feedstock type and pyrolysis conditions. Gcb Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Solhy, A.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies:Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-E.; Jo, J.-H.; Kim, I.-T.; Yoo, Y.-S. Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing. Energies 2017, 10. [Google Scholar] [CrossRef]
- Kim, N.C.; Jang, B.M. Sodium chloride decomposting method in food waste compost using triple salt. J. Korra 2004, 12, 86–94. [Google Scholar]
- Fechler, N.; Fellinger, T.-P.; Antonietti, M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv. Mater. 2013, 25, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Antonietti, M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 2014, 69, 460–466. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). A Study on Food Waste Reduction Equipment Guidelines and Quality Standard; Ministry of Environment: Sejong City, Korea, 2009.
- Lu, A.-H.; Li, W.C.; Schmidt, W.; Schüth, F. Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating. Microporous Mesoporous Mater. 2006, 95, 187–192. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. J. Hazard. Mater. 2008, 152, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Cazetta, A.L.; Vargas, A.M.A.; Nogami, E.M.; Kunita, M.H.; Martins, A.C.; Silva, T.L.; Moraes, J.C.G.; Almeida, V.C.; Guilherme, M.R. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 2011, 174, 117–125. [Google Scholar] [CrossRef]
- Vargas, A.M.M.; Garcia, C.A.; Reis, E.M.; Lenzi, E.; Costa, W.F.; Almeida, V.C. NaOH-activated carbon from flamboyant (Delonix regia) pods:Optimization of preparation conditions using central composite rotatable design. Chem. Eng. J. 2010, 162, 43–50. [Google Scholar] [CrossRef]
- Dai, Z.; Meng, J.; Muhammad, N.; Muhammad, L.; Wang, H.; He, Y.; Brookes, P.C.; Xu, J. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. J. Soils Sedim. 2013, 13, 989–1000. [Google Scholar] [CrossRef]
- Broström, M.; Enestam, S.; Backman, R.; Mäkelä, K. Condensation in the KCl–NaCl system. Fuel Process. Technol. 2013, 105, 142–148. [Google Scholar] [CrossRef]
- Vandecandelaere, N.; Rey, C.; Drouet, C. Biomimetic apatite-based biomaterials:On the critical impact of synthesis and post-synthesis parameters. J. Mater. Sci. Mater. Med. 2012, 23, 2593–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekiaris, G.; Bruun, S.; Peltre, C.; Houot, S.; Jensen, L.S. FTIR–PAS: A powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste Manag. 2015, 39, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Porchelvi, E.; Muthu, S. The spectroscopic (FT-IR, FT-Raman and NMR), NCA, Fukui function analysis first order hyperpolarizability, TGA of 6-chloro-3, 4dihydro-2H-1, 2, 4-benzothiazine-7-sulphonamide1, 1-dioxide by ab initio HF and Density Functional method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 123, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, P.; Nanda, S.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J. Anal. Appl. Pyrolysis 2013, 104, 485–493. [Google Scholar] [CrossRef]
- Zhao, S.-X.; Ta, N.; Wang, X.-D. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies 2017, 10. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, R.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 2010, 101, 4646–4655. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 2013, 6, 663–677. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Yuan, J.-H.; Xu, R.-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.W.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov, V.; Chan, V.S.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lammers, K.; Arbuckle-keil, G.; Dighton, J. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biol. Biochem. 2009, 41, 340–347. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Zhang, M.; Resende, F.L.P.; Moutsoglou, A.; Raynie, D.E. Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J. Anal. Appl. Pyrolysis 2012, 98, 65–71. [Google Scholar] [CrossRef]
- Kleen, M.; Gellerstedt, G. Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J. Anal. Appl. Pyrolysis 1995, 35, 15–41. [Google Scholar] [CrossRef]
- Jiang, W.; Saxena, A.; Song, B.; Ward, B.B.; Beveridge, T.J.; Myneni, S.C. Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 2004, 20, 11433–11442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiong, S.; Xiao, B.; Yu, D.; Jia, X. Mechanism of wet sewage sludge pyrolysis in a tubular furnace. Int. J. Hydrog. Energy 2011, 36, 355–363. [Google Scholar] [CrossRef]
- Robertson, T.B. Contributions to the theory of the mode of action of inorganic salts upon proteins in solution. J. Biol. Chem. 1911, 9, 303–326. [Google Scholar]
- Sawabe, T.; Akiyoshi, M.; Yoshida, K.; Yano, T. Estimation of neutron-irradiation-induced defect in 3C–SiC from change in XRD peak shift and DFT study. J. Nucl. Mater. 2011, 417, 430–434. [Google Scholar] [CrossRef]
- Parra, M.R.; Haque, F.Z. Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 2014, 3, 363–369. [Google Scholar] [CrossRef]
- Ewais, E.M.M.; Ahmed, Y.M.Z.; El-Amir, A.A.M.; El-didamony, H. Cement kiln dust/rice husk ash as a low temperature route for wollastonite processing. Epitoany-J. Silicate Based Composite Mater. 2014. [Google Scholar] [CrossRef]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose—Structure and characterization. Cell. Chem. Technol. 2011, 45, 13. [Google Scholar]
- Wei, L.; Agarwal, U.P.; Hirth, K.C.; Matuana, L.M.; Sabo, R.C.; Stark, N.M. Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohydr. Polym. 2017, 169, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Shih, K.; Li, X.Y.; Liu, G.; Zeng, E.Y.; Wang, F. Accuracy and application of quantitative X-ray diffraction on the precipitation of struvite product. Water Res. 2016, 90, 9–14. [Google Scholar] [CrossRef] [PubMed]
Classification | Composition Ratio (wt %) | Food-Ingredient Processing Methods | |
---|---|---|---|
Food Ingredients | Processing Method | ||
Grains | 16 | Rice (16) | |
Vegetables | 51 | Napa cabbage (9) | Cutting width: <100 mm |
Potato (20) | Chopped into 5 mm pieces | ||
Onion (20) | |||
Daikon (2) | |||
Fruits | 14 | Apple (7) | Split lengthwise into 8 pieces |
Mandarin/orange (7) | |||
Meat | 19 | Meat (19) | Cutting width: ~3 cm. |
Total | 100 | 100 |
(wt %) | C | H | N | S | O | Na | Cl |
---|---|---|---|---|---|---|---|
B_0% | 76.29 0.05 | 2.94 0.02 | 6.04 0.15 | – | 14.13 0.10 | 0.24 0.03 | 0.38 0.01 |
B_5% | 62.47 0.23 | 2.39 0.10 | 5.05 0.01 | – | 12.62 0.15 | 7.02 0.01 | 10.47 0.02 |
A_5% | 75.90 0.13 | 2.90 0.07 | 6.03 0.09 | – | 12.16 0.04 | 2.20 0.10 | 0.82 0.10 |
B_10% | 52.43 0.54 | 2.06 0.05 | 4.04 0.02 | – | 10.59 0.35 | 12.29 0.09 | 18.60 0.14 |
A_10% | 76.21 0.11 | 3.00 0.01 | 5.91 0.19 | – | 12.04 0.01 | 2.09 0.14 | 0.77 0.16 |
B_20% | 38.95 0.89 | 1.98 0.50 | 3.41 0.05 | – | 8.63 1.08 | 18.64 0.99 | 28.40 1.53 |
A_20% | 74.92 1.36 | 3.97 0.72 | 6.21 0.01 | – | 12.30 1.09 | 2.27 0.30 | 0.34 0.15 |
Added NaCl | Food Waste (g) | NaCl Content (g) | Weight after Pyrolysis (g) | Char Yield (wt %) |
---|---|---|---|---|
0% | 120.00 | - | 27.29 0.18 | 22.77 0.15 |
5% | 120.00 | 6.32 | 34.79 0.28 | 23.73 0.23 |
10% | 120.00 | 13.34 | 42.04 0.41 | 23.92 0.34 |
20% | 120.00 | 30.00 | 60.59 2.40 | 25.49 2.01 |
Sample | BET Specific Surface Area (m2∙g−1) | Total Pore Volume (p/p0 = 0.990) (cm3∙g−1) | Average Pore Diameter (nm) | Mesopore Surface Area (m2∙g−1) | Mesopore Volume (cm3∙g−1) |
---|---|---|---|---|---|
B_0% | 1.226 | 0.00201 | 6.552 | 0.672 | 0.00176 |
B_5% | 0.824 | 0.00193 | 9.475 | 0.465 | 0.00177 |
A_5% | 2.946 | 0.00458 | 7.556 | 1.158 | 0.00377 |
B_10% | 1.184 | 0.00341 | 11.505 | 0.902 | 0.00329 |
A_10% | 3.500 | 0.00623 | 8.501 | 1.686 | 0.00537 |
B_20% | 0.795 | 0.00256 | 14.119 | 0.651 | 0.00248 |
A_20% | 2.485 | 0.00653 | 12.610 | 1.623 | 0.00613 |
NaOH | 3.914 | 0.01746 | 17.845 | 2.452 | 0.01675 |
NaCl | 0% | B_5% | A_5% | B_10% | A_10% | B_20% | A_20% |
---|---|---|---|---|---|---|---|
18.7 (4.74) | |||||||
20.8 (4.27) | 20.8 (4.27) | 20.8 (4.27) | 20.8 (4.27) | 20.8 (4.27) | |||
23.5 (3.78) | 23.5 (3.78) | 23.5 (3.78) | |||||
27.4 (3.25) | 27 (3.30) | 27.2 (3.26) | 27.2 (3.27) | 27.2 (3.27) | 27.4 (3.25) | 27.2 (3.27) | |
28.4 (3.14) | 28.8 (3.10) | 28.4 (3.14) | 28.8 (3.10) | 28.4 (3.14) | 28.8 (3.10) | 28.4 (3.14) | |
30.8 (2.90) | |||||||
31.5 (2.84) | 31.2 (2.86) | 31.6 (2.83) | 31.4 (2.85) | 31.6 (2.83) | 31.7 (2.82) | 31.6 (2.83) | |
33 (2.71) | 33 (2.71) | 33 (2.71) | 33 (2.71) | ||||
34.3 (2.61) | 34.3 (2.61) | 34.3 (2.61) | 34.3 (2.61) | 34.3 (2.61) | 34.3 (2.61) | ||
40.5 (2.22) | 41 (2.20) | 40.5 (2.22) | 41 (2.20) | 40.5 (2.22) | 41 (2.20) | 40.5 (2.22) | |
45.5 (1.99) | 45 (2.01) | 45.5 (1.99) | 45 (2.01) | 45.5 (1.99) | 45.5 (1.99) | 45.2 (2.00) | |
50.3 (1.81) | 51 (1.79) | 50.3 (1.81) | 50.3 (1.81) | 50.3 (1.81) | |||
53.5 (1.71) | 53.8 (1.70) | ||||||
56.5 (1.63) | 55.5 (1.65) | 56.5 (1.63) | 56 (1.64) | 56.4 (1.63) | 56.5 (1.63) | 56.2 (1.63) | |
61.5 (1.51) | 61.5 (1.51) | ||||||
65.5 (1.42) | 65.2 (1.43) | 65.7 (1.42) | 66.2 (1.41) | ||||
66.5 (1.40) | 67.5 (1.39) | 66.5 (1.40) | 66.5 (1.40) | ||||
75.5 (1.26) | 74 (1.28) | 74.7 (1.27) | 75.2 (1.26) | ||||
84 (1.15) | 82.5 (1.17) | 83.5 (1.16) | 84 (1.15) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-E.; Jo, J.-H.; Kim, I.-T.; Yoo, Y.-S. Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects. Energies 2018, 11, 2341. https://doi.org/10.3390/en11092341
Lee Y-E, Jo J-H, Kim I-T, Yoo Y-S. Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects. Energies. 2018; 11(9):2341. https://doi.org/10.3390/en11092341
Chicago/Turabian StyleLee, Ye-Eun, Jun-Ho Jo, I-Tae Kim, and Yeong-Seok Yoo. 2018. "Influence of NaCl Concentration on Food-Waste Biochar Structure and Templating Effects" Energies 11, no. 9: 2341. https://doi.org/10.3390/en11092341